Kendall distributions and level sets in bivariate exchangeable survival models

For a given bivariate survival function F@?, we study the relations between the set of the level curves of F@? and the Kendall distribution. Then we characterize the survival models simultaneously admitting a specified Kendall distribution and a specified set of level curves. Attention will be restricted to exchangeable survival models.

[1]  José Juan Quesada-Molina,et al.  Kendall distribution functions and associative copulas , 2009, Fuzzy Sets Syst..

[2]  Roger B. Nelsen,et al.  Some properties of Schur-constant survival models and their copulas , 2005 .

[3]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[4]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[5]  Fabrizio Durante,et al.  Distorted Copulas: Constructions and Tail Dependence , 2010 .

[6]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[7]  Fabio Spizzichino,et al.  DEPENDENCE AND MULTIVARIATE AGING: THE ROLE OF LEVEL SETS OF THE SURVIVAL FUNCTION , 2001 .

[8]  Fabio Spizzichino,et al.  Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes , 2005 .

[9]  Fabio Spizzichino,et al.  Bivariate survival models with Clayton aging functions , 2005 .

[10]  I. T. Jolliffe,et al.  Springer series in statistics , 1986 .

[11]  Elisabetta Alvoni,et al.  On a class of transformations of copulas and quasi-copulas , 2009, Fuzzy Sets Syst..

[12]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[13]  Paul Embrechts,et al.  Bounds for functions of multivariate risks , 2006 .

[14]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[15]  Fabrizio Durante,et al.  Semicopulas: characterizations and applicability , 2006, Kybernetika.

[16]  Fabrizio Durante,et al.  Semi-copulas, capacities and families of level sets , 2010, Fuzzy Sets Syst..

[17]  W. Ames Mathematics in Science and Engineering , 1999 .

[18]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[19]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[20]  Radko Mesiar,et al.  A concept of universal integral based on measures of level sets , 2009, 2009 7th International Symposium on Intelligent Systems and Informatics.

[21]  Stochastic Orders , 2008 .

[22]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..