Solid acid membranes for high temperature (¿140° C) proton exchange membrane fuel cells

Proton exchange membrane fuel cells (PEMFCs) are an exciting clean energy technology for power delivery for a range of devices from automotive applications through to portable digital equipment. Current technology for PEMFCs is limited by its inability to operate at high temperatures which is particularly desirable for automotive applications. This review summarises and discusses the key areas of research in recent years for non-polymer based high temperature membranes or so-called solid acid membranes. The review addresses: the reasons for operating at high temperatures, the proton transport mechanisms, the limitations of current polymer membranes and their modification and on the future of solid acid membranes elaborating on future pathways which may bring about tangible enhancements in this technology.

[1]  Robert F. Savinell,et al.  Thermal Stability of Nafion® in Simulated Fuel Cell Environments , 1996 .

[2]  R. Savinell,et al.  A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte , 1996 .

[3]  P. Barboux,et al.  Proton conductivity of colloidal nanometric zirconium phosphates , 2003 .

[4]  Stacey I. Zones,et al.  A combustion-free methodology for synthesizing zeolites and zeolite-like materials , 2003, Nature.

[5]  K. Kreuer On the complexity of proton conduction phenomena , 2000 .

[6]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[7]  A. Jiménez-lópez,et al.  Electrical conductivity of chromia-pillared α-zirconium phosphate , 1997 .

[8]  A. Jiménez-lópez,et al.  Ion conduction and dielectric loss in Li+-exchanged mixed Fe–Cr oxide pillared α-zirconium phosphate , 1997 .

[9]  K. Yoon,et al.  Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell , 2003 .

[10]  Galo J. A. A. Soler-Illia,et al.  Block copolymer-templated mesoporous oxides , 2003 .

[11]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[12]  K. Harris,et al.  Topotactic synthesis of a-zirconium phenylphosphonate from a-zirconium phosphate , 1998 .

[13]  R. Roy,et al.  The novel acid catalysts — framework zirconium phosphates: the bulk and surface structure , 2000 .

[14]  Deborah J. Jones,et al.  Surfactant-Assisted Synthesis of a Mesoporous Form of Zirconium Phosphate with Acidic Properties , 1998 .

[15]  A. Clearfield,et al.  Highly Porous Zirconium Aryldiphosphonates and Their Conversion to Strong Bronsted Acids , 2002 .

[16]  Bernd Bauer,et al.  Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C) , 2001 .

[17]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[18]  G. Stucky,et al.  Highly Ordered Porous Zirconias from Surfactant-Controlled Syntheses: Zirconium Oxide−Sulfate and Zirconium Oxo Phosphate , 1999 .

[19]  I. Honma,et al.  Organic/inorganic nano-composites for high temperature proton conducting polymer electrolytes , 2003 .

[20]  T. Kijima,et al.  Intercalation and interlayer amidation properties ofn-alkylmonoamines for γ-zirconium(2-carboxyethyl)phosphonate phosphate , 1997 .

[21]  O. Savadogo Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications☆ , 2004 .

[22]  B. Schulte,et al.  Organic/inorganic composite membranes for application in DMFC , 2003 .

[23]  G. Alberti,et al.  Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. II. Ac conductivity of zirconium alkyl-sulphophenyl phosphonates in the range 100–200°C, in the presence or absence of water vapour , 1992 .

[24]  S. Haile,et al.  High-Performance Solid Acid Fuel Cells Through Humidity Stabilization , 2004, Science.

[25]  Deborah J. Jones,et al.  Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates , 1999 .

[26]  A. Clearfield,et al.  The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour , 1964 .

[27]  Keith Scott,et al.  Performance of the direct methanol fuel cell with radiation-grafted polymer membranes , 2000 .

[28]  D. Zhao,et al.  Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs , 2003, Nature materials.

[29]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[30]  Ronald K.A.M. Mallant PEMFC systems: the need for high temperature polymers as a consequence of PEMFC water and heat management , 2003 .

[31]  G. Alberti,et al.  Composite Membranes for Medium-Temperature PEM Fuel Cells , 2003 .

[32]  G. Alberti,et al.  Layered and pillared metal(IV) phosphates and phosphonates , 1996 .

[33]  Deborah J. Jones,et al.  Vibrational spectroscopic characterisation of protonic conducting polyethyleneimine-α- and γ-zirconium phosphate nanocomposites , 1997 .

[34]  S. Srinivasan,et al.  A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes , 2003, physics/0310029.

[35]  G. Alberti Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures , 2000 .

[36]  S. Kaliaguine,et al.  Sulfonated polyether ether ketone based composite polymer electrolyte membranes , 2001 .

[37]  A. Clearfield,et al.  Conductivity of group IV metal sulfophosphonates and a new class of interstratified metal amine-sulfophosphonates , 1996 .

[38]  R. Roy,et al.  Synthesis of high-surface-area complex zirconium phosphates via mechanochemical activation route , 1999 .

[39]  A. Clearfield,et al.  Epoxy Nanocomposites Based on the Synthetic α-Zirconium Phosphate Layer Structure , 2004 .

[40]  Lei Zhang,et al.  An investigation of proton conduction in select PEM’s and reaction layer interfaces-designed for elevated temperature operation , 2003 .

[41]  K. Hinokuma,et al.  Proton conductivity of phosphoric acid derivative of fullerene , 2002 .

[42]  A. Clearfield,et al.  Direct hydrothermal synthesis of zirconium phosphate and zirconium arsenate with a novel basic layered structure in alkaline media , 1998 .

[43]  A. Azens,et al.  Proton conducting polymer composites for electrochromic devices , 1999 .

[44]  Sossina M. Haile,et al.  Solid acids as fuel cell electrolytes , 2001, Nature.

[45]  M. Nogami,et al.  Superprotonic Conductors of Glassy Zirconium Phosphates , 1996 .

[46]  Michael D. Guiver,et al.  Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications , 2000 .

[47]  K. Hinokuma,et al.  Fullerene proton conductors , 2001 .

[48]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[49]  E. Montoneri,et al.  Protonic conductivity of layered zirconium phosphonates containing −SO3H groups. I. Preparation and characterization of a mixed zirconium phosphonate of composition Zr(O3PR)0.73(O3PR′)1.27·nH2O, with R=−C6H4−SO3H and R′ = −CH2−OH , 1992 .

[50]  A. Clearfield,et al.  Ionic conductivity of anhydrous zirconium bis(monohydrogen orthophosphate) and its sodium ion forms , 1982 .

[51]  G. Stucky,et al.  Formation of a Porous Zirconium Oxo Phosphate with a High Surface Area by a Surfactant‐Assisted Synthesis , 1996 .

[52]  G. Alberti,et al.  On the mechanism of diffusion and ionic transport in crystalline insoluble acid salts of tetravalent metals—I Electrical conductance of zirconium bis (monohydrogen ortho-phosphate) monohydrate with a layered structure , 1978 .

[53]  Galo J. A. A. Soler-Illia,et al.  Design of meso-structured titanium oxo based hybrid organic–inorganic networks , 2001 .

[54]  Felix Bauer,et al.  Microstructural characterization of Zr-phosphate–Nafion® membranes for direct methanol fuel cell (DMFC) applications , 2004 .

[55]  Sossina M. Haile,et al.  Polymer Solid Acid Composite Membranes for Fuel‐Cell Applications , 2000 .

[56]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[57]  G. Alberti,et al.  ac conductivity of anhydrous pellicular zirconium phosphate in hydrogen form , 1984 .

[58]  S. Haile,et al.  Instability of sulfate and selenate solid acids in fuel cell environments , 2003 .

[59]  B. Kumar,et al.  Polymer-ceramic composite protonic conductors , 2003 .

[60]  U. Costantino,et al.  Zirconium 2-amino ethyl phosphonate : preparation, characterization and preliminary study of its electrical conductivity and intercalation properties , 1995 .

[61]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[62]  Kenneth A. Mauritz,et al.  Organic-Inorganic Hybrid Materials: Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides , 1998 .

[63]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[64]  Paola Costamagna,et al.  Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C , 2002 .

[65]  A. Clearfield Hydrothermal synthesis of selected phosphates and molybdates , 1992 .

[66]  G. Alberti,et al.  Proton conductivity of mesoporous zirconium phosphate pyrophosphate , 1999 .

[67]  A 1H NMR pulse gradient spin-echo (PGSE) study of the mass transport of dimethyl oxalate and ethylene glycol: new fuels for the DOFC , 2003 .

[68]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .

[69]  R. Roy,et al.  The influence of solid precursors nature on structural, textural and surface properties of framework zirconium phosphates synthesized via mechanochemical activation , 2001 .

[70]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[71]  I. G. Kevrekidis,et al.  The stirred tank reactor polymer electrolyte membrane fuel cell , 2003 .

[72]  L. Klein,et al.  Transport properties of Nafion™ composite membranes for proton-exchange membranes fuel cells , 2003 .

[73]  J. Hanson,et al.  Preparation and Characterization of a New 3-Dimensional Zirconium Hydrogen Phosphate, τ-Zr(HPO4)2. Determination of the Complete Crystal Structure Combining Synchrotron X-ray Single-Crystal Diffraction and Neutron Powder Diffraction , 1998 .

[74]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[75]  S. Ferroni,et al.  Preparation, characterization and proton conductivity of titanium phosphate sulfophenylphosphonate , 2001 .

[76]  B. R. Churagulov,et al.  Influence of thermal treatment on the ion transport properties of hydrated zirconia , 2003 .

[77]  C. Sanchez,et al.  Interactions between poly(ethylene oxide)-based surfactants and transition metal alkoxides: their role in the templated construction of mesostructured hybrid organic–inorganic composites , 2000 .

[78]  M. Nagai,et al.  Proton exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane, silicotungstic acid and α-zirconium phosphate hydrate , 2001 .

[79]  M. Miyayama,et al.  Proton conductivity of superacidic sulfated zirconia , 2004 .

[80]  Paul M. Grant,et al.  Hydrogen lifts off — with a heavy load , 2003, Nature.

[81]  Hyuk-Nyun Kim,et al.  Characterization of Zirconium Phosphate/Polycation Thin Films Grown by Sequential Adsorption Reactions , 1997 .

[82]  G. Alberti,et al.  Proton-conducting solid dispersions of silica and zirconium phosphate pyrophosphate , 1995 .

[83]  Deborah J. Jones,et al.  Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer , 1997 .

[84]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[85]  K. Kreuer,et al.  On the development of proton conducting materials for technological applications , 1997 .

[86]  E. Montoneri,et al.  Organoinorganic sulfonated polymers—Review , 1996 .

[87]  G. Alberti,et al.  Crystalline insoluble salts of polybasic metals - II. Synthesis of crystalline zirconium or titanium phosphate by direct precipitation☆ , 1968 .

[88]  G. Alberti,et al.  Solid state protonic conductors, present main applications and future prospects , 2001 .

[89]  L. Szirtes,et al.  Preparation of some intercalation compounds of layered γ-zirconium phosphate and zirconium phosphate-phosphite , 1991 .

[90]  Galo J. A. A. Soler-Illia,et al.  Design and post-functionalisation of ordered mesoporous zirconia thin films. , 2001, Chemical communications.

[91]  U. Costantino,et al.  Relative humidity influence on proton conduction of hydrated pellicular zirconium phosphate in hydrogen form , 1986 .

[92]  S. Haile,et al.  Superprotonic behavior of Cs2(HSO4)(H2PO4) – a new solid acid in the CsHSO4–CsH2PO4 system , 2000 .

[93]  G. Alberti,et al.  Layered metalIV phosphonates, a large class of inorgano-organic proton conductors , 1997 .

[94]  J. Maier,et al.  Proton transfer in the three-dimensional hydrogen bond network of the high temperature phase of CsHSO4: a molecular dynamics study , 1996 .

[95]  Galo J. A. A. Soler-Illia,et al.  Fundamentals of Mesostructuring Through Evaporation‐Induced Self‐Assembly , 2004 .

[96]  E. Montoneri,et al.  Protonic conductivity of layered zirconium phosphonates containing —SO3H groups. III. Preparation and characterization of γ-zirconium sulfoaryl phosphonates , 1996 .

[97]  R. Slade,et al.  Conductivity variations in composites of α-zirconium phosphate and fumed silica , 1992 .

[98]  E. K. Andersen,et al.  α-zirconium hydrogenphosphate, monohydrate. preparation, chemical properties and ac conductivity , 1982 .

[99]  Modeling and analysis of hydrogen permeation in mixed proton-electronic conductors , 2003 .

[100]  Deborah J. Jones,et al.  Enhancement of the protonic conductivity of α-zirconium phosphate by composite formation with alumina or silica , 1997 .