Sensitivity analysis of a single phase fault locator based on support vector machines
暂无分享,去创建一个
J. Mora-Florez | S. Perez-Londono | W. Gil-Gonzalez | S. Pérez-Londoño | J. Mora-Flórez | W. Gil-González
[1] J. Sola,et al. Importance of input data normalization for the application of neural networks to complex industrial problems , 1997 .
[2] A. Felipe.,et al. Implementación y comparación de técnicas de localización de fallas en sistemas de distribución basadas en minería de datos , 2013 .
[3] Sandra Milena Pérez Londoño,et al. Classification methodology and feature selection to assist fault location in power distribution systems , 2008 .
[4] Joaquim Melendez,et al. Comparison of impedance based fault location methods for power distribution systems , 2008 .
[5] F. Glover,et al. Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.
[6] Narayanan Kumarappan,et al. Accurate fault location on EHV lines using both RBF based support vector machine and SCALCG based neural network , 2010, Expert Syst. Appl..
[7] Javier M. Moguerza,et al. Support Vector Machines with Applications , 2006, math/0612817.
[8] Juan José Mora Flórez,et al. Strategy based on genetic algorithms for an optimal adjust of a support vector machine used for locating faults in power distribution systems , 2010 .
[9] Runze Li,et al. Design and Modeling for Computer Experiments , 2005 .
[10] Kenny Q. Ye,et al. Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .
[11] Dimitris Kanellopoulos,et al. Data Preprocessing for Supervised Leaning , 2007 .
[12] G. Venter,et al. An algorithm for fast optimal Latin hypercube design of experiments , 2010 .
[13] Mireia Farrús,et al. Fusión de sistemas de reconocimiento basados en características de alto y bajo nivel , 2007 .
[14] Anil K. Jain,et al. Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[15] Arun Ross,et al. Score normalization in multimodal biometric systems , 2005, Pattern Recognit..
[16] A. Herrera-Orozco,et al. Load modeling for fault location in distribution systems with distributed generation , 2012, 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA).
[17] J. Dagenhart,et al. The 40-/spl Omega/ ground-fault phenomenon , 2000 .
[18] Boonserm Kijsirikul,et al. Adaptive Directed Acyclic Graphs for Multiclass Classification , 2002, PRICAI.
[19] J. José.,et al. Localización de faltas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento , 2006 .
[20] J. Mora-Florez,et al. Fault location method based on the determination of the minimum fault reactance for uncertainty loaded and unbalanced power distribution systems , 2010, 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA).
[21] Ye Zhang,et al. Improved hyperspectral land-cover analysis using relevance vector machine , 2010, 2010 IEEE International Conference on Image Processing.
[22] Ingeniero Electricista,et al. ESTUDIO E IMPLEMENTACION DE UNA HERRAMIENTA BASADA EN MAQUINAS DE SOPORTE VECTORIAL APLICADA A LA LOCALIZACION DE FALLAS EN SISTEMAS DE DISTRIBUCION , 2012 .
[23] D. Thukaram,et al. Artificial neural network and support vector Machine approach for locating faults in radial distribution systems , 2005, IEEE Transactions on Power Delivery.
[24] Sandra Pérez-Londoño,et al. DISEÑO DE UNA HERRAMIENTA EFICIENTE DE SIMULACIÓN AUTOMÁTICA DE FALLAS EN SISTEMAS ELÉCTRICOS DE POTENCIA , 2010 .
[25] Zyad Shaaban,et al. Normalization as a Preprocessing Engine for Data Mining and the Approach of Preference Matrix , 2006, 2006 International Conference on Dependability of Computer Systems.