The planar Ramsey number I

The planar Ramsey number PR(H1, H2) is the smallest integer n such that any planar graph on n vertices contains a copy of H1 or its complement contains a copy of H2. It is known that the Ramsey number R(C4, K7) = 22. The planar Ramsey numbers PR(C4, Kl ) for l ≤ 6 are known. In this paper we show that PR(C4, K7) = 20. c © 2008 Published by Elsevier B.V.

[1]  Halina Bielak A note on the Ramsey number and the planar Ramsey number for C4 and complete graphs , 1999, Discuss. Math. Graph Theory.

[2]  Yongqi Sun,et al.  The planar Ramsey number PR(K4-e, K5) , 2007, Discret. Math..

[3]  Izolda Gorgol Planar Ramsey Numbers , 2005, Discuss. Math. Graph Theory.

[4]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A Computational Approach for the Ramsey Numbers R(C_4, K_n) , 2002 .

[6]  Craig A. Tovey,et al.  Planar Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[7]  Halina Bielak,et al.  The planar Ramsey number for C4 and K5 is 13 , 2001, Discret. Math..

[8]  Andrzej Dudek,et al.  Planar Ramsey Numbers for Small Graphs , 2005 .

[9]  K. Walker,et al.  The Analogue of Ramsey Numbers for Planar Graphs , 1969 .