Convexly Independent Subsets of the Minkowski Sum of Planar Point Sets

Let $P$ and $Q$ be finite sets of points in the plane. In this note we consider the largest cardinality of a subset of the Minkowski sum $S\subseteq P \oplus Q$ which consist of convexly independent points. We show that, if $|P| = m$ and $|Q| = n$ then $|S| = O(m^{2/3} n^{2/3} + m + n)$.

[1]  P. Erdös On Sets of Distances of n Points , 1946 .

[2]  Li Xueliang,et al.  Construction of integral graphs , 2000 .

[3]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[4]  Frank Harary,et al.  Which graphs have integral spectra , 1974 .

[5]  Uriel G. Rothblum,et al.  Convex Combinatorial Optimization , 2003, Discret. Comput. Geom..

[6]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.

[7]  Uriel G. Rothblum,et al.  The convex dimension of a graph , 2007, Discret. Appl. Math..

[8]  Xueliang Li,et al.  Integral trees with diameters 4, 6 and 8 , 2004, Australas. J Comb..

[9]  Peter Braß,et al.  Erds Distance Problems in Normed Spaces , 1996, Comput. Geom..

[10]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[11]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[12]  Song Y. Yan,et al.  Elementary Number Theory , 2002 .