Laguerre derivative and monogenic Laguerre polynomials: An operational approach

Hypercomplex function theory generalizes the theory of holomorphic functions of one complex variable by using Clifford Algebras and provides the fundamentals of Clifford Analysis as a refinement of Harmonic Analysis in higher dimensions. We define the Laguerre derivative operator in hypercomplex context and by using operational techniques we construct generalized hypercomplex monogenic Laguerre polynomials. Moreover, Laguerre-type exponentials of order m are defined.

[1]  W. Sprößig,et al.  On Operators and Elementary Functions in Clifford Analysis , 1999 .

[2]  H. Malonek A new hypercomplex structure of the euclidean space R m+1 and the concept of hypercomplex differentiability , 1990 .

[3]  Associated Laguerre Polynomials: Monomiality and Bi-Orthogonal Functions , 2008 .

[4]  G. Dattoli Laguerre and generalized hermite polynomials: the point of view of the operational method , 2004 .

[5]  Franciscus Sommen,et al.  A product and an exponential function in hypercomplex function theory , 1981 .

[6]  Helmuth R. Malonek,et al.  A hypercomplex derivative of monogenic functsions in and its Applications , 1999 .

[7]  K. Gürlebeck,et al.  Holomorphic Functions in the Plane and n-dimensional Space , 2007 .

[8]  R. Lávička Canonical bases for sl(2,C)-modules of spherical monogenics in dimension 3 , 2010, 1003.5587.

[9]  M. I. Falcão,et al.  Generalized Exponentials through Appell sets in Rn+1 and Bessel functions , 2007 .

[10]  K. Gürlebeck,et al.  On a generalized Appell system and monogenic power series , 2009 .

[11]  F. F. Brackx The exponential function of a quaternion variable , 1979 .

[12]  Maria Isabel Jordão Cação Constructive approximation by monogenic polynomials , 2004 .

[13]  John Riordan,et al.  Inverse Relations and Combinatorial Identities , 1964 .

[14]  M. I. Falcão,et al.  REMARKS ON THE GENERATION OF MONOGENIC FUNCTIONS , 2006 .

[15]  Giuseppe Dattoli,et al.  Laguerre-Type Exponentials, and the Relevant 𝐿-Circular and 𝐿-Hyperbolic Functions , 2003 .

[16]  H. Malonek,et al.  On Complete Sets of Hypercomplex Appell Polynomials , 2008 .

[17]  Giuseppe Dattoli,et al.  Theory and applications of generalized Bessel functions , 1996 .

[18]  R. Fueter Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen , 1935 .

[19]  D. Constales,et al.  Basic sets of pofynomials in clifford analysis , 1990 .

[20]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[21]  Giuseppe Dattoli,et al.  Eigenfunctions of laguerre-type operators and generalized evolution problems , 2005, Math. Comput. Model..

[22]  Fred Brackx,et al.  Clifford algebra-valued orthogonal polynomials in Euclidean space , 2005, J. Approx. Theory.

[23]  M. I. Falcão,et al.  Special Monogenic Polynomials—Properties and Applications , 2007 .