Cellulose nanocrystals with different morphologies and chiral properties

[1]  J. Engström,et al.  Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. , 2017, ACS applied materials & interfaces.

[2]  Yonggang Yao,et al.  Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures. , 2017, ACS applied materials & interfaces.

[3]  N. Baccile,et al.  Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals. , 2017, Biomacromolecules.

[4]  Siwei Zhao,et al.  Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures. , 2017, Nature nanotechnology.

[5]  Todd Hoare,et al.  Review of Hydrogels and Aerogels Containing Nanocellulose , 2017 .

[6]  J. Youngblood,et al.  Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation. , 2017, Biomacromolecules.

[7]  M. Lindström,et al.  Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation. , 2017, ACS applied materials & interfaces.

[8]  D. Kemp,et al.  Female iridescent colour ornamentation in a butterfly that displays mutual ornamentation: is it a sexual signal? , 2017, Animal Behaviour.

[9]  W. Hamad Cellulose Nanocrystals: Properties, Production and Applications , 2017 .

[10]  Chris J. Chandler,et al.  Structural Color in Marine Algae , 2017 .

[11]  E. Cranston,et al.  Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[12]  B. Frka‐Petesic,et al.  Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields , 2017, Advanced materials.

[13]  C. Schütz,et al.  Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[14]  Pawel Pieranski,et al.  Mind the Microgap in Iridescent Cellulose Nanocrystal Films , 2017, Advanced materials.

[15]  P. Tahir,et al.  Preparation and Fundamental Characterization of Cellulose Nanocrystal from Oil Palm Fronds Biomass , 2017, Journal of Polymers and the Environment.

[16]  A. Curvelo,et al.  Production of cellulose nanocrystals from sugarcane bagasse fibers and pith , 2016 .

[17]  S. Vignolini,et al.  Biocompatible and Sustainable Optical Strain Sensors for Large‐Area Applications , 2016 .

[18]  I. Smalyukh,et al.  Cellulose Nanocrystal/Poly(ethylene glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion. , 2016, ACS applied materials & interfaces.

[19]  A. Dufresne,et al.  Impact of cellulose nanocrystal aspect ratio on crystallization and reinforcement of poly(butylene adipate‐co‐terephthalate) , 2016 .

[20]  V. Tsukruk,et al.  Assembly of Amphiphilic Hyperbranched Polymeric Ionic Liquids in Aqueous Media at Different pH and Ionic Strength , 2016 .

[21]  P. Rudall,et al.  Structural colour from helicoidal cell-wall architecture in fruits of Margaritaria nobilis , 2016, Journal of The Royal Society Interface.

[22]  Dirk Schneider,et al.  Nonlinear control of high-frequency phonons in spider silk. , 2016, Nature materials.

[23]  Zhiqiang Fang,et al.  Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. , 2016, Chemical reviews.

[24]  K. Yager,et al.  Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[25]  Sunghan Kim,et al.  Probing Flexural Properties of Cellulose Nanocrystal-Graphene Nanomembranes with Force Spectroscopy and Bulging Test. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[26]  J. Lagerwall,et al.  Equilibrium Liquid Crystal Phase Diagrams and Detection of Kinetic Arrest in Cellulose Nanocrystal Suspensions , 2016, Front. Mater..

[27]  Qingsheng Wu,et al.  Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures , 2016, Advanced materials.

[28]  D. Bratashov,et al.  Impact of high-frequency ultrasound on nanocomposite microcapsules: in silico and in situ visualization. , 2016, Physical chemistry chemical physics : PCCP.

[29]  Yafang Yin,et al.  Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. , 2016, Carbohydrate polymers.

[30]  O. Sulaiman,et al.  Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). , 2015, Carbohydrate polymers.

[31]  Sidney T. Malak,et al.  Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano- and Microparticles. , 2015, ACS nano.

[32]  E. Kumacheva,et al.  Circular Dichroism of Chiral Nematic Films of Cellulose Nanocrystals Loaded with Plasmonic Nanoparticles. , 2015, ACS nano.

[33]  L. Bergström,et al.  Understanding nanocellulose chirality and structure–properties relationship at the single fibril level , 2015, Nature Communications.

[34]  Qianqian Wang,et al.  Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis , 2015, Cellulose.

[35]  J. Bras,et al.  Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. , 2015, ACS applied materials & interfaces.

[36]  D. Gray,et al.  Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings , 2015, Cellulose.

[37]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[38]  M. Le Normand,et al.  Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. , 2014, Carbohydrate polymers.

[39]  Dagang Liu,et al.  Structure–color mechanism of iridescent cellulose nanocrystal films , 2014 .

[40]  Jeremy J. Baumberg,et al.  Digital Color in Cellulose Nanocrystal Films , 2014, ACS applied materials & interfaces.

[41]  E. J. Foster,et al.  Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. , 2014, ACS applied materials & interfaces.

[42]  M. MacLachlan,et al.  Imprinting of Photonic Patterns with Thermosetting Amino-Formaldehyde-Cellulose Composites. , 2013, ACS macro letters.

[43]  R. Berry,et al.  Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.

[44]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[45]  David L. Kaplan,et al.  Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs , 2012, Journal of Materials Science: Materials in Medicine.

[46]  J. Putaux,et al.  Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers , 2012, Cellulose.

[47]  O. Ikkala,et al.  SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions , 2012, Cellulose.

[48]  P. Lu,et al.  Preparation and characterization of cellulose nanocrystals from rice straw. , 2012, Carbohydrate polymers.

[49]  V. T. Forsyth,et al.  Nanostructure of cellulose microfibrils in spruce wood , 2011, Proceedings of the National Academy of Sciences.

[50]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[51]  Wadood Y. Hamad,et al.  Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films , 2010 .

[52]  C. Weder,et al.  Cellulose whisker/epoxy resin nanocomposites. , 2010, ACS applied materials & interfaces.

[53]  Xin Xu,et al.  Atomic force microscopy characterization of cellulose nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[54]  Niklas Lorén,et al.  Determination of local diffusion properties in heterogeneous biomaterials. , 2009, Advances in colloid and interface science.

[55]  Yurong Cai,et al.  Cellulose whiskers extracted from mulberry: A novel biomass production , 2009 .

[56]  L. Mahadevan,et al.  Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies , 2009, Science.

[57]  Christine Ortiz,et al.  Bioinspired Structural Materials , 2008, Science.

[58]  Sibel Yildiz,et al.  The effects of thermal modification on crystalline structure of cellulose in soft and hardwood , 2007 .

[59]  Damien Bordel,et al.  Orientation of native cellulose in an electric field. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[60]  M. Sain,et al.  Bioprocess preparation of wheat straw fibers and their characterization , 2006 .

[61]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[62]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[63]  P. Saranpää,et al.  Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies) , 2003, Journal of Wood Science.

[64]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[65]  Per Stenius,et al.  Evaluation of surface lignin on cellulose fibers with XPS , 1999 .

[66]  D. Gray,et al.  Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose , 1998 .

[67]  J. Villarrubia Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation , 1997, Journal of research of the National Institute of Standards and Technology.

[68]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[69]  D. Gray,et al.  Chiral nematic ordering of polysaccharides , 1994 .

[70]  F. Livolant Ordered phases of DNA in vivo and in vitro , 1991 .

[71]  M. L. Nelson,et al.  Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II , 1964 .