CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients

[1]  E. Lerut,et al.  CYP3A5 and CYP3A4 but not MDR1 Single‐nucleotide Polymorphisms Determine Long‐term Tacrolimus Disposition and Drug‐related Nephrotoxicity in Renal Recipients , 2007, Clinical pharmacology and therapeutics.

[2]  T. Habuchi,et al.  Influence of UGT1A7 and UGT1A9 Intronic I399 Genetic Polymorphisms on Mycophenolic Acid Pharmacokinetics in Japanese Renal Transplant Recipients , 2007, Therapeutic drug monitoring.

[3]  R. Colvin,et al.  Banff '05 Meeting Report: Differential Diagnosis of Chronic Allograft Injury and Elimination of Chronic Allograft Nephropathy (‘CAN’) , 2007, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[4]  V. Haufroid,et al.  CYP3A5 and ABCB1 Polymorphisms and Tacrolimus Pharmacokinetics in Renal Transplant Candidates: Guidelines from an Experimental Study , 2006, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[5]  B. Vinet,et al.  Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients , 2006, Pharmacogenetics and genomics.

[6]  T. Habuchi,et al.  Clinical and Genetic Risk Factors for Posttransplant Diabetes Mellitus in Adult Renal Transplant Recipients Treated with Tacrolimus , 2005, Transplantation.

[7]  T. Habuchi,et al.  Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. , 2005, Transplantation proceedings.

[8]  K. Salmela,et al.  Predictors of renal allograft histologic damage progression. , 2005, Journal of the American Society of Nephrology : JASN.

[9]  T. Habuchi,et al.  Influence of CYP3A5 and MDR1 (ABCB1) Polymorphisms on the Pharmacokinetics of Tacrolimus in Renal Transplant Recipients , 2004, Transplantation.

[10]  P. Syrris,et al.  The Influence of Pharmacogenetics on the Time to Achieve Target Tacrolimus Concentrations after Kidney Transplantation , 2004, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[11]  J. Squifflet,et al.  The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. , 2004, Pharmacogenetics.

[12]  J. D. de Fijter,et al.  Conversion from cyclosporine to azathioprine at three months reduces the incidence of chronic allograft nephropathy. , 2003, Kidney international.

[13]  W. Weimar,et al.  Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR‐1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus , 2003, Clinical pharmacology and therapeutics.

[14]  Tetsuro Kato,et al.  Chronopharmacokinetics of Tacrolimus in Kidney Transplant Recipients: Occurrence of Acute Rejection , 2003, Journal of clinical pharmacology.

[15]  E. Schuetz,et al.  Genetic contribution to variable human CYP3A-mediated metabolism. , 2002, Advanced drug delivery reviews.

[16]  P Taylor,et al.  Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. , 2001, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[17]  T. Habuchi,et al.  Chrono and clinical pharmacokinetic study of tacrolimus in continuous intravenous administration , 2001, International journal of urology : official journal of the Japanese Urological Association.

[18]  S. Jensik,et al.  Safety And Efficacy Of Tacrolimus In Combination With Mycophenolate Mofetil (mmf) In Cadaveric Renal Transplant Recipients1 , 2000 .

[19]  S. Jensik,et al.  Safety and efficacy of tacrolimus in combination with mycophenolate mofetil (MMF) in cadaveric renal transplant recipients. FK506/MMF Dose-Ranging Kidney Transplant Study Group. , 2000, Transplantation.

[20]  J. Hooff,et al.  Low systemic exposure to tacrolimus correlates with acute rejection. , 1999, Transplantation proceedings.

[21]  H. E. Hansen,et al.  The Banff 97 working classification of renal allograft pathology. , 1999, Kidney international.

[22]  K. Goa,et al.  Tacrolimus. An update of its pharmacology and clinical efficacy in the management of organ transplantation. , 1997, Drugs.

[23]  A. Matas,et al.  One-year follow-up of an open-label trial of FK506 for primary kidney transplantation. A report of the U.S. Multicenter FK506 Kidney Transplant Group. , 1996, Transplantation.

[24]  T. Starzl,et al.  Clinical Pharmacokinetics of Tacrolimus , 1995, Clinical pharmacokinetics.

[25]  S. Gruber,et al.  Pharmacokinetics of FK506 After Intravenous and Oral Administration in Patients Awaiting Renal Transplantation , 1994, Journal of clinical pharmacology.

[26]  T. Starzl,et al.  Pharmacokinetics of FK506 in Liver Transplant Recipients After Continuous Intravenous Infusion , 1993, Journal of clinical pharmacology.

[27]  W. Buurman,et al.  Japanese study of kidney transplantation: 1. Results of early phase II study. , 1992, Transplant international : official journal of the European Society for Organ Transplantation.