Si nanocrystals by ultra-low-energy ion beam-synthesis for non-volatile memory applications

Abstract In this work, we show how to manipulate two-dimensional arrays of Si NCs in thin (⩽10 nm) SiO2 layers by ultra-low-energy (⩽1 keV) ion implantation and subsequent thermal annealing. The influence of implantation parameters (dose, energy), annealing conditions (temperature, duration, ambient) and oxide thickness on the NCs characteristics (position, size, density) is reported. Particular emphasis is placed upon post-implantation thermal treatments performed in nitrogen-diluted-oxygen ambient that significantly improve the integrity of the oxide and allow for the fabrication of non-volatile memory devices operating at low-gate voltages. Thermal oxidation in N2-diluted-O2 of high-temperature pre-formed silicon NCs has been also examined and modeled using an extended three-dimensional Deal–Grove model. This model reveals that stress effects, due to the deformation of the oxide, slow down the chemical oxidation rate and lead to a self-limiting oxidation of NCs. The model predictions are in agreement with the experimental results.

[1]  I. Crupi,et al.  Nanocrystal metal-oxide-semiconductor memories obtained by chemical vapor deposition of Si nanocrystals , 2002 .

[2]  M. Perego,et al.  Nanocrystals manufacturing by ultra-low-energy ion-beam-synthesis for non-volatile memory applications , 2004 .

[3]  W. Eckstein,et al.  Tridyn — A TRIM simulation code including dynamic composition changes , 1984 .

[4]  Ya-Chin King,et al.  Charge-trap memory device fabricated by oxidation of Si/sub 1-x/Ge/sub x/ , 2001 .

[5]  Krishna C. Saraswat,et al.  Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides , 1988 .

[6]  M. Perego,et al.  Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis , 2004 .

[7]  Si/SiO2 multilayers: synthesis by reactive magnetron sputtering and photoluminescence emission , 2003 .

[8]  William G. Oldham,et al.  Modeling of stress effects in silicon oxidation , 1989 .

[9]  The electronic and optical properties of Si/SiO2 superlattices: role of confined and defect states , 2000 .

[10]  James D. Plummer,et al.  Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. I: Experimental results , 1985 .

[11]  O. Jaoul,et al.  Plasticité de la silice amorphe de part et ďautre de la transition vitreuse , 1985 .

[12]  Robert W. Dutton,et al.  Plastic analysis of cylinder oxidation , 1989 .

[13]  Panagiotis Dimitrakis,et al.  Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation , 2004 .

[14]  M. Perego,et al.  Detection and characterization of silicon nanocrystals embedded in thin oxide layers , 2004 .

[15]  Harry A. Atwater,et al.  Tuning the emission wavelength of Si nanocrystals in SiO2 by oxidation , 1998 .

[16]  Yijian Chen,et al.  Modeling silicon dots fabrication using self-limiting oxidation , 2001 .

[17]  N. Cherkashin,et al.  Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis , 2003 .

[18]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[19]  A. Claverie,et al.  Transmission electron microscopy measurements of the injection distances in nanocrystal-based memories , 2003 .

[20]  G. Ghibaudo,et al.  Dry oxidation of silicon: A new model of growth including relaxation of stress by viscous flow , 1983 .

[21]  Panagiotis Dimitrakis,et al.  MOS memory structures by very-low-energy-implanted Si in thin SiO2 , 2003 .

[22]  P. Rivallin,et al.  Study of self-limiting oxidation of silicon nanoclusters by atomistic simulations , 2002 .

[23]  Dominique Collard,et al.  Analysis and application of a viscoelastic model for silicon oxidation , 1994 .

[24]  Christian Colliex,et al.  Spectrum-image: The next step in EELS digital acquisition and processing , 1989 .

[25]  B. Schmidt,et al.  Stress measurements of germanium nanocrystals embedded in silicon oxide , 2003 .

[26]  Orsay,et al.  Multi-dot floating-gates for nonvolatile semiconductor memories: Their ion beam synthesis and morphology , 2004, cond-mat/0407329.

[27]  S. Iijima,et al.  Oxidation property of silicon small particles , 1991 .

[28]  G. Guillot,et al.  Simultaneous observation of “Self Trapped Exciton” and Q-confined exciton luminescence emission in silicon nanocrystals , 2005 .

[29]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .