Three tRNA Binding Sites Involved in the Ribosomal Elongation Cycle

[1]  H. Rheinberger,et al.  Codon-anticodon interaction at the ribosomal E site. , 1986, The Journal of biological chemistry.

[2]  K. Nierhaus,et al.  A highly efficient poly(U)‐dependent poly(Phe) synthesis system for the extreme halophile archaebacterium Halobacterium halobium , 1985 .

[3]  W. Wintermeyer,et al.  tRNA binding sites of ribosomes from Escherichia coli. , 1984, Biochemistry.

[4]  H. Rheinberger,et al.  An alternative model for the elongation cycle of protein biosynthesis , 1984 .

[5]  K. Nierhaus,et al.  Codon-anticodon interaction at the ribosomal P site improves the accuracy of the decoding process. , 1984, Biochemistry international.

[6]  H. Rheinberger,et al.  The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. , 1983, European journal of biochemistry.

[7]  H. Rheinberger,et al.  Testing an alternative model for the ribosomal peptide elongation cycle. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Makarov,et al.  Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes , 1983, FEBS letters.

[9]  D. Riesner,et al.  Binding of tRNA in different functional states to Escherichia coli ribosomes as measured by velocity sedimentation. , 2005, European journal of biochemistry.

[10]  Y. Ivanov,et al.  70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. , 2005, European journal of biochemistry.

[11]  S. Kirillov,et al.  Non‐exclusion principle of Ac‐Phe‐tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes , 1982, FEBS letters.

[12]  W. Wintermeyer,et al.  Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex. , 1982, Biochemistry.

[13]  H. Rheinberger,et al.  Three tRNA binding sites on Escherichia coli ribosomes. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Ofengand,et al.  Correct codon--anticodon base pairing at the 5'-anticodon position blocks covalent cross-linking between transfer ribonucleic acid and 16S RNA at the ribosomal P site. , 1981, Biochemistry.

[15]  H. Rheinberger,et al.  Simultaneous binding of three tRNA molecules by the ribosome of Escherichia coli , 1980 .

[16]  K. Nierhaus,et al.  Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Spirin,et al.  Elongation factor G-promoted translocation and polypeptide elongation in ribosomes without GTP cleavage: use of columns with matrix-bound polyuridylic acid. , 1979, Methods in enzymology.

[18]  P. Leder The elongation reactions in protein synthesis. , 1973, Advances in protein chemistry.

[19]  H. Ishitsuka,et al.  Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. , 1970, The Journal of biological chemistry.

[20]  J. Modolell,et al.  Rapid inhibition of polypeptide chain extension by streptomycin. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Söll,et al.  Studies on polynucleotides. LXXVI. Specificity of transfer RNA for codon recognition as studied by amino acid incorporation. , 1967, Journal of molecular biology.

[22]  A. Rich,et al.  THE NUMBER OF SOLUBLE RNA MOLECULES ON RETICULOCYTE POLYRIBOSOMES. , 1964, Proceedings of the National Academy of Sciences of the United States of America.