NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes

We present a subdivision framework that adds extraordinary vertices to NURBS of arbitrarily high degree. The surfaces can represent any odd degree NURBS patch exactly. Our rules handle non-uniform knot vectors, and are not restricted to midpoint knot insertion. In the absence of multiple knots at extraordinary points, the limit surfaces have bounded curvature.

[1]  J. Warren,et al.  Subdivision methods for geometric design , 1995 .

[2]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[3]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[4]  Neil A. Dodgson,et al.  Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.

[5]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[6]  Adi Levin Modified subdivision surfaces with continuous curvature , 2006, ACM Trans. Graph..

[7]  Neil A. Dodgson,et al.  Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision , 2009, Comput. Aided Geom. Des..

[8]  Charles T. Loop Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.

[9]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[10]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[11]  Georg Umlauf,et al.  Loop subdivision with curvature control , 2006, SGP '06.

[12]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[13]  Jörg Peters,et al.  Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..

[14]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[15]  Neil A. Dodgson,et al.  Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes , 2009, IMA Conference on the Mathematics of Surfaces.

[16]  Weiyin Ma,et al.  Subdivision surfaces for CAD - an overview , 2005, Comput. Aided Des..

[17]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[18]  Zvi Galil,et al.  Data structures and algorithms for disjoint set union problems , 1991, CSUR.

[19]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[21]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[22]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[23]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[24]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[25]  Neil A. Dodgson,et al.  Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..

[26]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[27]  Dieter W. Fellner,et al.  Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.

[28]  Marian Neamtu,et al.  Subdivision Surfaces - Can they be Useful for Geometric Modeling Applications? , 2001 .

[29]  Leif Kobbelt,et al.  Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..

[30]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[31]  F. Holt Toward a curvature-continuous stationary subdivision algorithm , 1996 .

[32]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[33]  Ron Goldman,et al.  Non-uniform subdivision for B-splines of arbitrary degree , 2009, Comput. Aided Geom. Des..

[34]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.