THE RELATIONSHIPS BETWEEN SKEWNESS AND KURTOSIS
暂无分享,去创建一个
[1] K. Pearson. Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .
[2] M. J. Lawrence. Inequalities of $s$-Ordered Distributions , 1975 .
[3] N. L. Johnson,et al. Systems of frequency curves generated by methods of translation. , 1949, Biometrika.
[4] Kjell A. Doksum,et al. Starshaped Transformations and the Power of Rank Tests , 1969 .
[5] Kjell A. Doksum,et al. Measures of Location and Asymmetry , 1975 .
[6] K. Balanda. Kurtosis comparison of the Cauchy and double exponential distributions , 1987 .
[7] J. Runnenburg,et al. Mean, median, mode , 1978 .
[8] F. Dyson. A Note on Kurtosis , 1943 .
[9] H. MacGillivray. The Mean, Median, Mode Inequality and Skewness for a Class of Densities , 1981 .
[10] Richard A. Groeneveld,et al. Measuring Skewness and Kurtosis , 1984 .
[11] D. Ruppert. What is Kurtosis? An Influence Function Approach , 1987 .
[12] H. L. MacGiliivray. Skewness properties of asymmetric foems of tu1cey lambda distributions , 1982 .
[13] W. R. van Zwet,et al. Mean, median, mode II , 1979 .
[14] E. Parzen. Nonparametric Statistical Data Modeling , 1979 .
[15] Paul S. Horn,et al. A Measure for Peakedness , 1983 .
[16] H. L. MacGillivray,et al. Skewness and Asymmetry: Measures and Orderings , 1986 .
[17] P. Bickel,et al. Descriptive Statistics for Nonparametric Models. III. Dispersion , 1976 .
[18] Wei-Yin Loh,et al. Bounds on AREs for Restricted Classes of Distributions Defined Via Tail-Orderings , 1984 .
[19] M. M. Siddiqui,et al. Robust Estimation of Location , 1967 .
[20] A crossing theorem for distribution functions and their moments , 1985, Bulletin of the Australian Mathematical Society.