Converting Nondeterministic Automata and Context-Free Grammars into Parikh Equivalent Deterministic Automata

We investigate the conversion of nondeterministic finite automata and context-free grammars into Parikh equivalent deterministic finite automata, from a descriptional complexity point of view. We prove that for each nondeterministic automaton with n states there exists a Parikh equivalent deterministic automaton with $e^{O(\sqrt{n \cdot \ln n})}$ states. Furthermore, this cost is tight. In contrast, if all the strings accepted by the given automaton contain at least two different letters, then a Parikh equivalent deterministic automaton with a polynomial number of states can be found. Concerning context-free grammars, we prove that for each grammar in Chomsky normal form with n variables there exists a Parikh equivalent deterministic automaton with $2^{O(n^2)}$ states. Even this bound is tight.

[1]  Piotr Lipinski,et al.  Improving Watermark Resistance against Removal Attacks Using Orthogonal Wavelet Adaptation , 2012, SOFSEM.

[2]  A. R. Meyer,et al.  Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.

[3]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[4]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[5]  FRANK R. MOORE,et al.  On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.

[6]  Anthony Widjaja To,et al.  Parikh Images of Regular Languages: Complexity and Applications , 2010, 1002.1464.

[7]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[8]  Jozef Gruska Descriptional Complexity of Context-Free Languages , 1973, MFCS.

[9]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[10]  Marek Chrobak,et al.  Errata to: "finite automata and unary languages" , 2003 .

[11]  Jeffrey Shallit,et al.  Unary Context-Free Grammars and Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower Bounds , 2002, J. Comput. Syst. Sci..

[12]  Anthony Widjaja Lin,et al.  Parikh Images of Grammars: Complexity and Applications , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[13]  Pierre Ganty,et al.  Parikhʼs theorem: A simple and direct automaton construction , 2010, Inf. Process. Lett..

[14]  Giovanni Pighizzini,et al.  Parikh's Theorem and Descriptional Complexity , 2012, SOFSEM.

[15]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[16]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .