The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb
暂无分享,去创建一个
C. H. Ling | D. Bennett | R. Poleski | K. Ulaczyk | M. Pawlak | A. Fukui | F. Abe | A. Udalski | M. Szymański | R. Barry | V. Bozza | P. Pietrukowicz | J. Skowron | S. Kozłowski | I. Soszyński | D. Sullivan | Y. Itow | Y. Matsubara | Y. Muraki | T. Yamada | P. Tristram | K. Masuda | P. Evans | T. Sumi | I. Bond | N. Rattenbury | Y. Matsubara | C. Ling | K. Ohnishi | To. Saito | D. Suzuki | A. Yonehara | C. Ranc | Y. Hirao | N. Koshimoto | M. Li | Y. Asakura | A. Sharan | M. Donachie | M. Nagakane | P. Mróz | M. Li | A. Bhattacharya | T. Yamada | T. Saito | I. Soszyński
[1] B. Gaudi,et al. An Earth-mass Planet in a 1-AU Orbit around a Brown Dwarf , 2017 .
[2] Akihiko Fukui,et al. THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .
[3] C. H. Ling,et al. The Exoplanet Mass-Ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass , 2016, 1612.03939.
[4] Sang-Mok Cha,et al. KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .
[5] K. Ulaczyk,et al. Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey , 2015, 1512.09142.
[6] C. H. Ling,et al. THE FIRST NEPTUNE ANALOG OR SUPER-EARTH WITH A NEPTUNE-LIKE ORBIT: MOA-2013-BLG-605LB , 2015, 1512.00134.
[7] C. H. Ling,et al. The frequency of snowline-region planets from four-years of OGLE-MOA-Wise second-generation microlensing. , 2015, Monthly notices of the Royal Astronomical Society.
[8] C. H. Ling,et al. MOA-2010-BLG-353Lb: A Possible Saturn Revealed , 2015, 1510.01393.
[9] A. Bhattacharya,et al. CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.
[10] R. Pfeifle,et al. CONFIRMATION OF THE PLANETARY MICROLENSING SIGNAL AND STAR AND PLANET MASS DETERMINATIONS FOR EVENT OGLE-2005-BLG-169 , 2015, 1507.08661.
[11] K. Ulaczyk,et al. OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY SUBARU AO IMAGING , 2015, 1506.08850.
[12] Khadeejah A. Zamudio,et al. PLANETARY CANDIDATES OBSERVED BY KEPLER. VI. PLANET SAMPLE FROM Q1–Q16 (47 MONTHS) , 2015, 1502.02038.
[13] E. Frank,et al. A radiogenic heating evolution model for cosmochemically Earth-like exoplanets , 2014 .
[14] K. Ulaczyk,et al. A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.
[15] Kaspar von Braun,et al. STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.
[16] A. Udalski,et al. MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.
[17] C. H. Ling,et al. MOA-2011-BLG-322Lb: a ‘second generation survey’ microlensing planet , 2013, 1310.0008.
[18] J. Parnell,et al. Circumstellar habitable zones for deep terrestrial biospheres , 2013 .
[19] P. Yock,et al. Extending the planetary mass function to Earth mass by microlensing at moderately high magnification , 2013, 1303.4123.
[20] Andrew Gould,et al. REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.
[21] K. Ulaczyk,et al. One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.
[22] K. Ulaczyk,et al. DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR , 2011, 1106.2160.
[23] K. Ulaczyk,et al. Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.
[24] University of Cambridge,et al. The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields , 2011, 1107.4008.
[25] L. Kaltenegger,et al. DETECTING VOLCANISM ON EXTRASOLAR PLANETS , 2010, 1009.1355.
[26] T. Barman,et al. The physical properties of extra-solar planets , 2010, 1001.3577.
[27] R. A. Street,et al. FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.
[28] B. Monard,et al. A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.
[29] D. Bennett. AN EFFICIENT METHOD FOR MODELING HIGH-MAGNIFICATION PLANETARY MICROLENSING EVENTS , 2009, 0911.2703.
[30] J. Anderson,et al. A Census of Exoplanets in Orbits Beyond 0.5 AU via Space-based Microlensing , 2009, 0902.3000.
[31] C. H. Ling,et al. A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.
[32] K. Masuda,et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008 .
[33] D. M. Bramich,et al. A new algorithm for difference image analysis , 2008, 0802.1273.
[34] R. P. Butler,et al. Catalog of Nearby Exoplanets , 2006, astro-ph/0607493.
[35] J. Anderson,et al. Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006, astro-ph/0603276.
[36] J. Beaulieu,et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.
[37] Shigeru Ida,et al. Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.
[38] Suzanne L. Hawley,et al. The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .
[39] T. Nakamura,et al. Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001, astro-ph/0102181.
[40] D. Bennett,et al. Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2000, astro-ph/0011466.
[41] C. Alard. Image subtraction using a space-varying kernel , 2000 .
[42] B. Scott Gaudi,et al. Distinguishing Between Binary-Source and Planetary Microlensing Perturbations , 1998 .
[43] J. Holtzman,et al. The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.
[44] J. Wambsganss. Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves , 1996, astro-ph/9611134.
[45] David P. Bennett,et al. Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.
[46] A. Gould,et al. The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.
[47] A. Bolatto,et al. The Detectability of Planetary Companions of Compact Galactic Objects from Their Effects on Microlensed Light Curves of Distant Stars , 1994, astro-ph/9407030.
[48] P. Schechter,et al. DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .
[49] Andrew Gould,et al. Discovering Planetary Systems through Gravitational Microlenses , 1992 .
[50] Bohdan Paczynski,et al. Gravitational microlensing by double stars and planetary systems , 1991 .