The lowest mass ratio planetary microlens: OGLE 2016–BLG–1195Lb

The MOA project is supported by JSPS Kakenhi grants JP24253004, JP26247023, JP16H06287, JP23340064 and JP15H00781 and by the Royal Society of New Zealand Marsden Grant MAU1104. The OGLE project has received funding from the National Science Centre, Poland, grant MAESTRO 2014/14/A/ST9/00121 to AU. NJR is a Royal Society of New Zealand Rutherford Discovery Fellow. AS is a University of Auckland Doctoral Scholar.

[1]  B. Gaudi,et al.  An Earth-mass Planet in a 1-AU Orbit around a Brown Dwarf , 2017 .

[2]  Akihiko Fukui,et al.  THE EXOPLANET MASS-RATIO FUNCTION FROM THE MOA-II SURVEY: DISCOVERY OF A BREAK AND LIKELY PEAK AT A NEPTUNE MASS , 2016 .

[3]  C. H. Ling,et al.  The Exoplanet Mass-Ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass , 2016, 1612.03939.

[4]  Sang-Mok Cha,et al.  KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES , 2016 .

[5]  K. Ulaczyk,et al.  Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey , 2015, 1512.09142.

[6]  C. H. Ling,et al.  THE FIRST NEPTUNE ANALOG OR SUPER-EARTH WITH A NEPTUNE-LIKE ORBIT: MOA-2013-BLG-605LB , 2015, 1512.00134.

[7]  C. H. Ling,et al.  The frequency of snowline-region planets from four-years of OGLE-MOA-Wise second-generation microlensing. , 2015, Monthly notices of the Royal Astronomical Society.

[8]  C. H. Ling,et al.  MOA-2010-BLG-353Lb: A Possible Saturn Revealed , 2015, 1510.01393.

[9]  A. Bhattacharya,et al.  CONFIRMATION OF THE OGLE-2005-BLG-169 PLANET SIGNATURE AND ITS CHARACTERISTICS WITH LENS–SOURCE PROPER MOTION DETECTION , 2015, 1507.08914.

[10]  R. Pfeifle,et al.  CONFIRMATION OF THE PLANETARY MICROLENSING SIGNAL AND STAR AND PLANET MASS DETERMINATIONS FOR EVENT OGLE-2005-BLG-169 , 2015, 1507.08661.

[11]  K. Ulaczyk,et al.  OGLE-2012-BLG-0563Lb: A SATURN-MASS PLANET AROUND AN M DWARF WITH THE MASS CONSTRAINED BY SUBARU AO IMAGING , 2015, 1506.08850.

[12]  Khadeejah A. Zamudio,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. VI. PLANET SAMPLE FROM Q1–Q16 (47 MONTHS) , 2015, 1502.02038.

[13]  E. Frank,et al.  A radiogenic heating evolution model for cosmochemically Earth-like exoplanets , 2014 .

[14]  K. Ulaczyk,et al.  A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary , 2014, Science.

[15]  Kaspar von Braun,et al.  STELLAR DIAMETERS AND TEMPERATURES. IV. PREDICTING STELLAR ANGULAR DIAMETERS , 2013, 1311.4901.

[16]  A. Udalski,et al.  MOA-2011-BLG-293LB: FIRST MICROLENSING PLANET POSSIBLY IN THE HABITABLE ZONE , 2013, 1310.3706.

[17]  C. H. Ling,et al.  MOA-2011-BLG-322Lb: a ‘second generation survey’ microlensing planet , 2013, 1310.0008.

[18]  J. Parnell,et al.  Circumstellar habitable zones for deep terrestrial biospheres , 2013 .

[19]  P. Yock,et al.  Extending the planetary mass function to Earth mass by microlensing at moderately high magnification , 2013, 1303.4123.

[20]  Andrew Gould,et al.  REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S RV ∼ 2.5 EXTINCTION CURVE , 2012, 1208.1263.

[21]  K. Ulaczyk,et al.  One or more bound planets per Milky Way star from microlensing observations , 2012, Nature.

[22]  K. Ulaczyk,et al.  DISCOVERY AND MASS MEASUREMENTS OF A COLD, 10 EARTH MASS PLANET AND ITS HOST STAR , 2011, 1106.2160.

[23]  K. Ulaczyk,et al.  Unbound or distant planetary mass population detected by gravitational microlensing , 2011, Nature.

[24]  University of Cambridge,et al.  The Optical Gravitational Lensing Experiment. OGLE-III Photometric Maps of the Galactic Bulge Fields , 2011, 1107.4008.

[25]  L. Kaltenegger,et al.  DETECTING VOLCANISM ON EXTRASOLAR PLANETS , 2010, 1009.1355.

[26]  T. Barman,et al.  The physical properties of extra-solar planets , 2010, 1001.3577.

[27]  R. A. Street,et al.  FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005–2008 , 2010, 1001.0572.

[28]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[29]  D. Bennett AN EFFICIENT METHOD FOR MODELING HIGH-MAGNIFICATION PLANETARY MICROLENSING EVENTS , 2009, 0911.2703.

[30]  J. Anderson,et al.  A Census of Exoplanets in Orbits Beyond 0.5 AU via Space-based Microlensing , 2009, 0902.3000.

[31]  C. H. Ling,et al.  A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192 , 2008, 0806.0025.

[32]  K. Masuda,et al.  MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand , 2008 .

[33]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[34]  R. P. Butler,et al.  Catalog of Nearby Exoplanets , 2006, astro-ph/0607493.

[35]  J. Anderson,et al.  Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common , 2006, astro-ph/0603276.

[36]  J. Beaulieu,et al.  Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing , 2006, Nature.

[37]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[38]  Suzanne L. Hawley,et al.  The Palomar/MSU Nearby Star Spectroscopic Survey. IV. The Luminosity Function in the Solar Neighborhood and M Dwarf Kinematics , 2002 .

[39]  T. Nakamura,et al.  Real-time difference imaging analysis of moa galactic bulge observations during 2000 , 2001, astro-ph/0102181.

[40]  D. Bennett,et al.  Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets , 2000, astro-ph/0011466.

[41]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[42]  B. Scott Gaudi,et al.  Distinguishing Between Binary-Source and Planetary Microlensing Perturbations , 1998 .

[43]  J. Holtzman,et al.  The Luminosity Function and Initial Mass Function in the Galactic Bulge , 1998, astro-ph/9801321.

[44]  J. Wambsganss Discovering Galactic planets by gravitational microlensing: magnification patterns and light curves , 1996, astro-ph/9611134.

[45]  David P. Bennett,et al.  Detecting Earth-Mass Planets with Gravitational Microlensing , 1996, astro-ph/9603158.

[46]  A. Gould,et al.  The Mass Spectrum Of Machos From Parallax Measurements , 1994, astro-ph/9409036.

[47]  A. Bolatto,et al.  The Detectability of Planetary Companions of Compact Galactic Objects from Their Effects on Microlensed Light Curves of Distant Stars , 1994, astro-ph/9407030.

[48]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[49]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[50]  Bohdan Paczynski,et al.  Gravitational microlensing by double stars and planetary systems , 1991 .