Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor.

Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties becoming lower than those from theory, carefully considering all sources of ν ¯ e is important when making theoretical predictions. One source of ν ¯ e that is often neglected arises from the irradiation of the nonfuel materials in reactors. The ν ¯ e rates and energies from these sources vary widely based on the reactor type, configuration, and sampling stage during the reactor cycle and have to be carefully considered for each experiment independently. In this article, we present a formalism for selecting the possible ν ¯ e sources arising from the neutron captures on reactor and target materials. We apply this formalism to the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, the ν ¯ e source for the the Precision Reactor Oscillation and Spectrum Measurement (PROSPECT) experiment. Overall, we observe that the nonfuel ν ¯ e contributions from HFIR to PROSPECT amount to 1% above the inverse beta decay threshold with a maximum contribution of 9% in the 1.8-2.0 MeV range. Nonfuel contributions can be particularly high for research reactors like HFIR because of the choice of structural and reflector material in addition to the intentional irradiation of target material for isotope production. We show that typical commercial pressurized water reactors fueled with low-enriched uranium will have significantly smaller nonfuel ν ¯ e contribution.

[1]  Cea,et al.  Exploring $$\hbox {CE}\nu \hbox {NS}$$ with NUCLEUS at the Chooz nuclear power plant , 2019, The European Physical Journal C.

[2]  P. T. Surukuchi,et al.  Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. , 2018, Physical review letters.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[4]  P. T. Surukuchi,et al.  Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment , 2018, Journal of Instrumentation.

[5]  N. Allemandou,et al.  The STEREO experiment , 2018, Journal of Instrumentation.

[6]  Nick Ryder,et al.  Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment , 2018, 1802.02884.

[7]  D. Dwyer,et al.  Impact of Fission Neutron Energies on Reactor Antineutrino Spectra , 2017, 1803.01787.

[8]  S. Klein,et al.  Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.

[9]  G F Cao,et al.  Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.

[10]  B. Betzler,et al.  Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading , 2016 .

[11]  V. Brdar,et al.  Antineutrino monitoring of spent nuclear fuel , 2016, 1606.06309.

[12]  Yeongduk Kim Detection of Antineutrinos for Reactor Monitoring , 2016 .

[13]  P. Huber Reactor antineutrino fluxes – Status and challenges , 2016, 1602.01499.

[14]  I. G. Park,et al.  Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment. , 2015, Physical review letters.

[15]  Z. Elekes,et al.  Nuclear Data Sheets for A = 128☆ , 2015 .

[16]  P. Huber,et al.  Neutron Capture and the Antineutrino Yield from Nuclear Reactors. , 2015, Physical review letters.

[17]  T. Kawano,et al.  Possible origins and implications of the shoulder in reactor neutrino spectra , 2015, 1506.00583.

[18]  J. Napolitano,et al.  New measurement of antineutrino oscillation with the full detector configuration at Daya Bay. , 2015, Physical review letters.

[19]  B. Ade,et al.  Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 , 2015 .

[20]  J. Baek,et al.  Conversion Preliminary Safety Analysis Report for the NIST Research Reactor , 2015 .

[21]  Axel Hoefer,et al.  Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations , 2014, 1411.0834.

[22]  D. Dwyer,et al.  Spectral structure of electron antineutrinos from nuclear reactors. , 2014, Physical review letters.

[23]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[24]  J. Sterbentz Q-value (MeV/fission) Determination for the Advanc , 2013 .

[25]  G. Jonkmans,et al.  Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly , 2013, 1309.4146.

[26]  J. Cao,et al.  Improved calculation of the energy release in neutron-induced fission , 2012, 1212.6625.

[27]  K. Heeger,et al.  Experimental parameters for a reactor antineutrino experiment at very short baselines , 2012, 1212.2182.

[28]  A. Cucoanes,et al.  New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. , 2012, Physical review letters.

[29]  V. Kopeikin,et al.  Flux and spectrum of reactor antineutrinos , 2012 .

[30]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[31]  Forrest B. Brown,et al.  An expanded criticality validation suite for MCNP , 2011 .

[32]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[33]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[34]  Richard T. Pagh,et al.  Compendium of Material Composition Data for Radiation Transport Modeling , 2011 .

[35]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[36]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[37]  J. Stevens,et al.  Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF). , 2010 .

[38]  E. Browne,et al.  Nuclear Data Sheets for A = 66 , 2010 .

[39]  N. Nica Nuclear Data Sheets for A = 97 , 2010 .

[40]  E. al.,et al.  Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor , 2009, 0911.1597.

[41]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[42]  N. Bowden,et al.  Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector , 2008, 0808.0698.

[43]  David J. Diamond,et al.  PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR. , 2003 .

[44]  V. Kopeǐkin The search for new physics in nonequilibrium reactor-antineutrino energy spectrum , 2001, hep-ph/0110030.

[45]  R. Knight,et al.  Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2 , 1999 .

[46]  J. Blachot Nuclear Data Sheets for A = 111 , 1996 .

[47]  L. Mikaelyan,et al.  Neutrino method remote measurement of reactor power and power output , 1994 .

[48]  D. Wilkinson Evaluation of beta-decay: I. The traditional phase space factors , 1989 .

[49]  Huo Junde Nuclear Data Sheets for A = 56 , 1987 .

[50]  W. Gelletly,et al.  Determination of the antineutrino spectrum from 235U thermal neutron fission products up to 9.5 MeV , 1985 .

[51]  J. W. Tepel,et al.  ENSDF - The evaluated nuclear structure data file , 1984 .

[52]  J. Blachot,et al.  Nuclear Data Sheets for A = 109 , 1984 .

[53]  F. Ajzenberg-Selove,et al.  Energy Levels of Light Nuclei A = 9 , 1984 .

[54]  P. Vogel,et al.  A Simple Approximation of the Fermi Function in Nuclear Beta Decay , 1983 .

[55]  G. Barreau,et al.  Levels and gamma energies ofAl28studied by thermal neutron capture , 1982 .

[56]  J. Rapaport Nuclear data sheets for A = 52* , 1970 .

[57]  G. Zerovnik,et al.  On normalization of fluxes and reaction rates in MCNP criticality calculations , 2014 .

[58]  S. Hogle Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor , 2012 .

[59]  An Feng-Peng,et al.  A study of antineutrino spectra from spent nuclear fuel at Daya Bay , 2012 .

[60]  Ian C Gauld,et al.  Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor , 2011 .

[61]  Douglas E. Peplow,et al.  A Computational Model of the High Flux Isotope Reactor for the Calculation of Cold Source, Beam Tube, and Guide Hall Nuclear Parameters , 2004 .

[62]  R. T. Primm,et al.  Modeling of the High Flux Isotope Reactor Cycle 400 , 2004 .

[63]  S. Raman,et al.  Nuclear data sheets for A = 112 , 1972 .

[64]  R. D. Cheverton,et al.  HFIR CORE NUCLEAR DESIGN. , 1971 .

[65]  J. Rapaport,et al.  Nuclear data sheets for A = 55* , 1970 .