Nonfuel Antineutrino Contributions in the High Flux Isotope Reactor.
暂无分享,去创建一个
P. T. Surukuchi | J. Napolitano | A. Balantekin | N. Bowden | M. Yeh | K. Heeger | H. Band | T. Classen | C. Lane | J. Maricic | R. Milincic | C. Zhang | M. Diwan | S. Hans | D. Jaffe | X. Ji | B. Littlejohn | X. Qian | R. Rosero | C. White | J. Wilhelmi | J. Nikkel | D. Jones | T. Langford | I. Mitchell | M. Dolinski | B. Hackett | A. Erickson | A. Galindo-Uribarri | P. Mueller | J. Brodsky | R. Neilson | H. Mumm | R. Varner | C. Gilbert | A. Woolverton | D. Bergeron | X. Zhang | D. Pushin | B. Heffron | X. Lu | M. Mendenhall | J. L. Palomino-Gallo | E. Romero-Romero | A. Zhang | A. Conant | C. Bass | C. Bryan | G. Deichert | B. Foust | J. Gaison | A. Hansell | O. Kyzylova | J. Larosa | S. Nour | M. A. Tyra | D. Berish | D. Norcini | D. Jones
[1] Cea,et al. Exploring $$\hbox {CE}\nu \hbox {NS}$$ with NUCLEUS at the Chooz nuclear power plant , 2019, The European Physical Journal C.
[2] P. T. Surukuchi,et al. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. , 2018, Physical review letters.
[3] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[4] P. T. Surukuchi,et al. Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment , 2018, Journal of Instrumentation.
[5] N. Allemandou,et al. The STEREO experiment , 2018, Journal of Instrumentation.
[6] Nick Ryder,et al. Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment , 2018, 1802.02884.
[7] D. Dwyer,et al. Impact of Fission Neutron Energies on Reactor Antineutrino Spectra , 2017, 1803.01787.
[8] S. Klein,et al. Observation of coherent elastic neutrino-nucleus scattering , 2017, Science.
[9] G F Cao,et al. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. , 2017, Physical review letters.
[10] B. Betzler,et al. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading , 2016 .
[11] V. Brdar,et al. Antineutrino monitoring of spent nuclear fuel , 2016, 1606.06309.
[12] Yeongduk Kim. Detection of Antineutrinos for Reactor Monitoring , 2016 .
[13] P. Huber. Reactor antineutrino fluxes – Status and challenges , 2016, 1602.01499.
[14] I. G. Park,et al. Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment. , 2015, Physical review letters.
[15] Z. Elekes,et al. Nuclear Data Sheets for A = 128☆ , 2015 .
[16] P. Huber,et al. Neutron Capture and the Antineutrino Yield from Nuclear Reactors. , 2015, Physical review letters.
[17] T. Kawano,et al. Possible origins and implications of the shoulder in reactor neutrino spectra , 2015, 1506.00583.
[18] J. Napolitano,et al. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay. , 2015, Physical review letters.
[19] B. Ade,et al. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400 , 2015 .
[20] J. Baek,et al. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor , 2015 .
[21] Axel Hoefer,et al. Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations , 2014, 1411.0834.
[22] D. Dwyer,et al. Spectral structure of electron antineutrinos from nuclear reactors. , 2014, Physical review letters.
[23] J. I. Crespo-Anadón,et al. Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.
[24] J. Sterbentz. Q-value (MeV/fission) Determination for the Advanc , 2013 .
[25] G. Jonkmans,et al. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly , 2013, 1309.4146.
[26] J. Cao,et al. Improved calculation of the energy release in neutron-induced fission , 2012, 1212.6625.
[27] K. Heeger,et al. Experimental parameters for a reactor antineutrino experiment at very short baselines , 2012, 1212.2182.
[28] A. Cucoanes,et al. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. , 2012, Physical review letters.
[29] V. Kopeikin,et al. Flux and spectrum of reactor antineutrinos , 2012 .
[30] N. M. Larson,et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .
[31] Forrest B. Brown,et al. An expanded criticality validation suite for MCNP , 2011 .
[32] P. Huber. On the determination of anti-neutrino spectra from nuclear reactors , 2011 .
[33] P. Huber. Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.
[34] Richard T. Pagh,et al. Compendium of Material Composition Data for Radiation Transport Modeling , 2011 .
[35] A. Letourneau,et al. The reactor antineutrino anomaly , 2011, 1101.2755.
[36] S. Cormon,et al. Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.
[37] J. Stevens,et al. Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF). , 2010 .
[38] E. Browne,et al. Nuclear Data Sheets for A = 66 , 2010 .
[39] N. Nica. Nuclear Data Sheets for A = 97 , 2010 .
[40] E. al.,et al. Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor , 2009, 0911.1597.
[41] S. Zinkle,et al. Structural materials for fission & fusion energy , 2009 .
[42] N. Bowden,et al. Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector , 2008, 0808.0698.
[43] David J. Diamond,et al. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR. , 2003 .
[44] V. Kopeǐkin. The search for new physics in nonequilibrium reactor-antineutrino energy spectrum , 2001, hep-ph/0110030.
[45] R. Knight,et al. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2 , 1999 .
[46] J. Blachot. Nuclear Data Sheets for A = 111 , 1996 .
[47] L. Mikaelyan,et al. Neutrino method remote measurement of reactor power and power output , 1994 .
[48] D. Wilkinson. Evaluation of beta-decay: I. The traditional phase space factors , 1989 .
[49] Huo Junde. Nuclear Data Sheets for A = 56 , 1987 .
[50] W. Gelletly,et al. Determination of the antineutrino spectrum from 235U thermal neutron fission products up to 9.5 MeV , 1985 .
[51] J. W. Tepel,et al. ENSDF - The evaluated nuclear structure data file , 1984 .
[52] J. Blachot,et al. Nuclear Data Sheets for A = 109 , 1984 .
[53] F. Ajzenberg-Selove,et al. Energy Levels of Light Nuclei A = 9 , 1984 .
[54] P. Vogel,et al. A Simple Approximation of the Fermi Function in Nuclear Beta Decay , 1983 .
[55] G. Barreau,et al. Levels and gamma energies ofAl28studied by thermal neutron capture , 1982 .
[56] J. Rapaport. Nuclear data sheets for A = 52* , 1970 .
[57] G. Zerovnik,et al. On normalization of fluxes and reaction rates in MCNP criticality calculations , 2014 .
[58] S. Hogle. Optimization of Transcurium Isotope Production in the High Flux Isotope Reactor , 2012 .
[59] An Feng-Peng,et al. A study of antineutrino spectra from spent nuclear fuel at Daya Bay , 2012 .
[60] Ian C Gauld,et al. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor , 2011 .
[61] Douglas E. Peplow,et al. A Computational Model of the High Flux Isotope Reactor for the Calculation of Cold Source, Beam Tube, and Guide Hall Nuclear Parameters , 2004 .
[62] R. T. Primm,et al. Modeling of the High Flux Isotope Reactor Cycle 400 , 2004 .
[63] S. Raman,et al. Nuclear data sheets for A = 112 , 1972 .
[64] R. D. Cheverton,et al. HFIR CORE NUCLEAR DESIGN. , 1971 .
[65] J. Rapaport,et al. Nuclear data sheets for A = 55* , 1970 .