A 2:1 Mean-motion Resonance Super-Jovian Pair Revealed by TESS, FEROS, and HARPS

We report the discovery of a super-Jovian 2:1 mean-motion resonance (MMR) pair around the G-type star TIC 279401253, whose dynamical architecture is a prospective benchmark for planet formation and orbital evolution analysis. The system was discovered thanks to a single-transit event recorded by the Transiting Exoplanet Survey Satellite mission, which pointed to a Jupiter-sized companion with poorly constrained orbital parameters. We began ground-based precise radial velocity (RV) monitoring with HARPS and FEROS within the Warm gIaNts with tEss survey to constrain the transiting body’s period, mass, and eccentricity. The RV measurements revealed not one but two massive planets with periods of 76.80−0.06+0.06 and 155.3−0.7+0.7 days, respectively. A combined analysis of transit and RV data yields an inner transiting planet with a mass of 6.14−0.42+0.39 M Jup and a radius of 1.00−0.04+0.04 R Jup, and an outer planet with a minimum mass of 8.02−0.18+0.18 M Jup, indicating a massive giant pair. A detailed dynamical analysis of the system reveals that the planets are locked in a strong first-order, eccentricity-type 2:1 MMR, which makes TIC 279401253 one of the rare examples of truly resonant architectures supporting disk-induced planet migration. The bright host star, V ≈ 11.9 mag, the relatively short orbital period (P b = 76.80−0.06+0.06 days), and pronounced eccentricity (e = 0.448 −0.029+0.028 ) make the transiting planet a valuable target for atmospheric investigation with the James Webb Space Telescope and ground-based extremely large telescopes.

[1]  R. P. Butler,et al.  A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202 , 2021, The Astronomical Journal.

[2]  R. Kotak,et al.  Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.

[3]  Avi Shporer,et al.  A nearby transiting rocky exoplanet that is suitable for atmospheric investigation , 2021, Science.

[4]  Joseph E. Rodriguez,et al.  A Highly Eccentric Warm Jupiter Orbiting TIC 237913194 , 2020, The Astronomical Journal.

[5]  Chelsea X. Huang,et al.  TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite , 2020, The Astronomical Journal.

[6]  M. Barbieri,et al.  TOI-677b: A Warm Jupiter (P = 11.2 days) on an Eccentric Orbit Transiting a Late F-type Star , 2019, The Astronomical Journal.

[7]  E. Sandford,et al.  Estimation of singly transiting K2 planet periods with Gaia parallaxes , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  T. Trifonov The Exo-Striker: Transit and radial velocity interactive fitting tool for orbital analysis and N-body simulations , 2019 .

[9]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  David J Armstrong,et al.  HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  Miguel de Val-Borro,et al.  HATS-43b, HATS-44b, HATS-45b, and HATS-46b: Four Short-period Transiting Giant Planets in the Neptune–Jupiter Mass Range , 2017, 1707.07093.

[12]  Rafael Brahm,et al.  CERES: A Set of Automated Routines for Echelle Spectra , 2016, 1609.02279.

[13]  R. Brahm,et al.  ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra , 2016, 1607.05792.

[14]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[15]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[16]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[17]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[18]  W. Kley,et al.  Planet-Disk Interaction and Orbital Evolution , 2012, 1203.1184.

[19]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[20]  Roman V. Baluev,et al.  Accounting for velocity jitter in planet search surveys , 2007, 0712.3862.

[21]  Roman V. Baluev,et al.  Assessing the statistical significance of periodogram peaks , 2007, 0711.0330.

[22]  M. Lee Diversity and Origin of 2:1 Orbital Resonances in Extrasolar Planetary Systems , 2003, astro-ph/0401410.

[23]  R. Sari,et al.  Eccentricity Evolution for Planets in Gaseous Disks , 2002, astro-ph/0202462.

[24]  S. Baliunas,et al.  No planet for HD 166435 , 2001, astro-ph/0109491.

[25]  S. Peale,et al.  Dynamics and Origin of the 2:1 Orbital Resonances of the GJ 876 Planets , 2001, astro-ph/0108104.

[26]  Harold F. Levison,et al.  A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters , 1998 .

[27]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[28]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[29]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[30]  J. Papaloizou,et al.  Orbital eccentricity growth through disc-companion tidal interaction , 2001 .

[31]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..