Promise and reality of post-lithium-ion batteries with high energy densities

Energy density is the main property of rechargeable batteries that has driven the entire technology forward in past decades. Lithium-ion batteries (LIBs) now surpass other, previously competitive battery types (for example, lead–acid and nickel metal hydride) but still require extensive further improvement to, in particular, extend the operation hours of mobile IT devices and the driving mileages of all-electric vehicles. In this Review, we present a critical overview of a wide range of post-LIB materials and systems that could have a pivotal role in meeting such demands. We divide battery systems into two categories: near-term and long-term technologies. To provide a realistic and balanced perspective, we describe the operating principles and remaining issues of each post-LIB technology, and also evaluate these materials under commercial cell configurations. Post-lithium-ion batteries are reviewed with a focus on their operating principles, advantages and the challenges that they face. The volumetric energy density of each battery is examined using a commercial pouch-cell configuration to evaluate its practical significance and identify appropriate research directions.

[1]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[2]  Doron Aurbach,et al.  Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2.(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling , 2014 .

[3]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[4]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[5]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[6]  Joo-Seong Kim,et al.  Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive , 2015 .

[7]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[8]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[9]  Masahiro Tatsumisago,et al.  Electrochemical Performance of All-Solid-State Li/S Batteries with Sulfur-Based Composite Electrodes Prepared by Mechanical Milling at High Temperature , 2013 .

[10]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[11]  S. Dou,et al.  Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries , 2014, Scientific Reports.

[12]  H. Ahn,et al.  Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Chung-Sung Tan,et al.  Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed , 2006 .

[14]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[15]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[16]  Lei Liu,et al.  NaTiO2: a layered anode material for sodium-ion batteries , 2015 .

[17]  Marc D. Walter,et al.  Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. , 2014, Nano letters.

[18]  K. Amine,et al.  Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells , 2008 .

[19]  Masaru Miyayama,et al.  Mg Intercalation Properties into V 2 O 5 gel/Carbon Composites under High-Rate Condition , 2003 .

[20]  C. W. Lim,et al.  Effect of lithium powder size on the performance of lithium-powder/lithium trivanadate secondary batteries shown via impedance analysis , 2014 .

[21]  Joseph F. Parker,et al.  Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling , 2014 .

[22]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[23]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[24]  Daniel Sharon,et al.  Review—Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions , 2015 .

[25]  Jaephil Cho,et al.  Spinel‐Layered Core‐Shell Cathode Materials for Li‐Ion Batteries , 2011 .

[26]  Jou-Hyeon Ahn,et al.  Microporous Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Electrolytes for Lithium/Sulfur Cells , 2006 .

[27]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[28]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[29]  Jeff Dahn,et al.  Structure and electrochemistry of LixMnyNi1−yO2 , 1992 .

[30]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[31]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[32]  C. Schlatter,et al.  Development of a 100 W rechargeable bipolar zinc/oxygen battery , 1998 .

[33]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[34]  Shejun Hu,et al.  Lithium-sulfur cell with combining carbon nanofibers–sulfur cathode and gel polymer electrolyte , 2012 .

[35]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[36]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[37]  Robert Spotnitz,et al.  Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries , 2007 .

[38]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[39]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[40]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[41]  Rana Mohtadi,et al.  An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. , 2015, Angewandte Chemie.

[42]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[43]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[44]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[45]  Feng Zhang,et al.  Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material , 2008 .

[46]  Sang Hyo Lee,et al.  Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery , 2007 .

[47]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[48]  G. L. Henriksen,et al.  Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries , 2004 .

[49]  Daniel P. Abraham,et al.  Structural characteristics and electrochemical performance of layered Li[Mn0.5−xCr2xNi0.5−x]O2 cathode materials , 2009 .

[50]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[51]  M. Armand,et al.  Building better batteries , 2008, Nature.

[52]  Doron Aurbach,et al.  Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. , 2014, Chemical communications.

[53]  Gabriel M. Veith,et al.  Cu2Sb thin films as anode for Na-ion batteries , 2013 .

[54]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[55]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[56]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[57]  Doron Aurbach,et al.  Fluoroethylene carbonate as an important component in organic carbonate electrolyte solutions for lithium sulfur batteries , 2015 .

[58]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[59]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[60]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[61]  Doron Aurbach,et al.  Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. , 2011, Journal of the American Chemical Society.

[62]  Bruno Scrosati,et al.  The Lithium/Air Battery: Still an Emerging System or a Practical Reality? , 2015, Advanced materials.

[63]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[64]  Seoin Back,et al.  Improved reversibility in lithium-oxygen battery: Understanding elementary reactions and surface charge engineering of metal alloy catalyst , 2014, Scientific Reports.

[65]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[66]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[67]  Ning Li,et al.  Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. , 2014, Nano letters.

[68]  Baojun Chen,et al.  An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating , 2014 .

[69]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[70]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[71]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[72]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[73]  Shin-ichi Nishimura,et al.  Electrochemical Mg2+ intercalation into a bimetallic CuFe Prussian blue analog in aqueous electrolytes , 2013 .

[74]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[75]  Taek-Soo Kim,et al.  Systematic Molecular‐Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries , 2014, Advanced materials.

[76]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[77]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[78]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[79]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[80]  Taek-Soo Kim,et al.  Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. , 2014, Nano letters.

[81]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[82]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[83]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[84]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[85]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[86]  Yang-Kook Sun,et al.  Evaluation of (CF3SO2)2N− (TFSI) Based Electrolyte Solutions for Mg Batteries , 2015 .

[87]  Ayyakkannu Manivannan,et al.  A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte , 2013 .

[88]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[89]  Doron Aurbach,et al.  On the Surface Chemistry of LiMO2 Cathode Materials (M = [ MnNi ] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies , 2010 .

[90]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[91]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[92]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[93]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[94]  Kyung Yoon Chung,et al.  NaCrO2 cathode for high-rate sodium-ion batteries , 2015 .

[95]  Jou-Hyeon Ahn,et al.  Discharge process of Li/PVdF/S cells at room temperature , 2006 .

[96]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[97]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[98]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[99]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[100]  Myung Won Seo,et al.  Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. , 2016, Nano letters.

[101]  Michael M. Thackeray,et al.  Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2 , 1993 .

[102]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[103]  Lingyun Liu,et al.  A review of blended cathode materials for use in Li-ion batteries , 2014 .

[104]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[105]  Byungwoo Park,et al.  Comparison of Overcharge Behavior of AlPO4-Coated LiCoO2 and LiNi0.8Co0.1Mn0.1 O 2 Cathode Materials in Li-Ion Cells , 2004 .

[106]  Bin Liu,et al.  Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. , 2013, ACS nano.

[107]  Seok-Gwang Doo,et al.  The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. , 2015, Nano letters.

[108]  Doron Aurbach,et al.  The effect of a solid electrolyte interphase on the mechanism of operation of lithium–sulfur batteries , 2015 .

[109]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[110]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[111]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[112]  Daniel Sharon,et al.  LithiumOxygen Electrochemistry in Non‐Aqueous Solutions , 2015 .

[113]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[114]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[115]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[116]  Yang Shao-Horn,et al.  Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. , 2012, Physical chemistry chemical physics : PCCP.

[117]  Jing Li,et al.  Sodium Carboxymethyl Cellulose A Potential Binder for Si Negative Electrodes for Li-Ion Batteries , 2007 .

[118]  Doron Aurbach,et al.  Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[119]  Jun Liu,et al.  Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes , 2010 .

[120]  Zhenan Bao,et al.  High‐Areal‐Capacity Silicon Electrodes with Low‐Cost Silicon Particles Based on Spatial Control of Self‐Healing Binder , 2015 .

[121]  Feng Lin,et al.  Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries , 2014, Nature Communications.

[122]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[123]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[124]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[125]  Tao Zhang,et al.  Superior Performance of a Li–O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon‐Free Cathode , 2015 .

[126]  H. DeWet Erasmus,et al.  Preparation and Properties of Silicon Monoxide , 1949 .

[127]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[128]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[129]  Dong Jin Lee,et al.  A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries , 2015 .

[130]  Atsushi Unemoto,et al.  Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte , 2014 .

[131]  Byung Gon Kim,et al.  A Lithium‐Sulfur Battery with a High Areal Energy Density , 2014 .

[132]  Bob R. Powell,et al.  Erratum: Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2·(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling [J. Electrochem. Soc., 161, A1534 (2014)] , 2014 .

[133]  Mariko Miyachi,et al.  Analysis of SiO Anodes for Lithium-Ion Batteries , 2005 .

[134]  Yang-Kook Sun,et al.  A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life. , 2015, ACS nano.

[135]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[136]  Laure Monconduit,et al.  Correction to “Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism” , 2013 .

[137]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[138]  Linda F Nazar,et al.  The role of catalysts and peroxide oxidation in lithium-oxygen batteries. , 2013, Angewandte Chemie.

[139]  Xiaoling Ma,et al.  Effect of AlPO4 coating on the electrochemical properties of LiNi0.8Co0.2 cathode material , 2008 .

[140]  Marca M. Doeff,et al.  Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials , 2012 .

[141]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[142]  Seong-In Moon,et al.  A new SiO/C anode composition for lithium-ion battery , 2008 .

[143]  D. Linden Handbook Of Batteries , 2001 .

[144]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[145]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[146]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[147]  Christopher S. Johnson,et al.  Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles , 2013 .

[148]  Taek-Soo Kim,et al.  Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes , 2015 .

[149]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[150]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[151]  Yang-Kook Sun,et al.  Understanding the behavior of Li–oxygen cells containing LiI , 2015 .

[152]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[153]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[154]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[155]  K. Amine,et al.  A comparative study on the substitution of divalent, trivalent and tetravalent metal ions in LiNi1−xMxO2 (M = Cu2+, Al3+ and Ti4+) , 2002 .

[156]  Lin Gu,et al.  Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability , 2015, Scientific Reports.

[157]  Zhenan Bao,et al.  Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. , 2013, Nature chemistry.

[158]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[159]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[160]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[161]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[162]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[163]  Nobuya Machida,et al.  Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes , 2004 .

[164]  Doron Aurbach,et al.  High performance of thick amorphous columnar monolithic film silicon anodes in ionic liquid electrolytes at elevated temperature , 2014 .

[165]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[166]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[167]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[168]  Kazuya Okuda,et al.  All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials , 2014 .

[169]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[170]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[171]  Eun-Hee Kim,et al.  Electrochemical Reduction Mechanism of Sulfur Particles Electrically Isolated from Carbon Cathodes of Lithium-Sulfur Cells , 2014 .

[172]  H. E. French,et al.  THE ELECTROLYSIS OF GRIGNARD SOLUTIONS1 , 1927 .

[173]  Byung Gon Kim,et al.  Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes. , 2013, ChemSusChem.

[174]  Daniel Sharon,et al.  On the Challenge of Electrolyte Solutions for Li-Air Batteries: Monitoring Oxygen Reduction and Related Reactions in Polyether Solutions by Spectroscopy and EQCM. , 2013, The journal of physical chemistry letters.

[175]  Yi Cui,et al.  Prelithiated silicon nanowires as an anode for lithium ion batteries. , 2011, ACS nano.

[176]  David Starosvetsky,et al.  Electrochemical and surface studies of zinc in alkaline solutions containing organic corrosion inhibitors , 2003 .

[177]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[178]  D. M. Dražić,et al.  Corrosion of Pure and Amalgamated Zinc in Concentrated Alkali Hydroxide Solutions , 1974 .

[179]  Raymond R. Unocic,et al.  Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries , 2013 .

[180]  C. Lee,et al.  Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery , 2006 .

[181]  Jin-Young Son,et al.  Crop-derived polysaccharides as binders for high-capacity silicon/graphite-based electrodes in lithium-ion batteries. , 2012, ChemSusChem.

[182]  Marshall C. Smart,et al.  Electrochemical Behavior of Layered Solid Solution Li2MnO3−LiMO2 (M = Ni, Mn, Co) Li-Ion Cathodes with and without Alumina Coatings , 2011 .

[183]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[184]  Li Li,et al.  Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD , 2013 .

[185]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[186]  Mietek Jaroniec,et al.  AlSb thin films as negative electrodes for Li-ion and Na-ion batteries , 2013 .

[187]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[188]  Byung Gon Kim,et al.  Wisdom from the Human Eye: A Synthetic Melanin Radical Scavenger for Improved Cycle Life of Li–O2 Battery , 2014 .

[189]  Gabriel M. Veith,et al.  The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance , 2014 .

[190]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[191]  Xugeng Guo,et al.  The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery , 2008 .

[192]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[193]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[194]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[195]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[196]  Rana Mohtadi,et al.  Boron Clusters as Highly Stable Magnesium-Battery Electrolytes , 2014, Angewandte Chemie.

[197]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[198]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[199]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[200]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[201]  G. Fey,et al.  Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution , 2008 .

[202]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[203]  Jaephil Cho,et al.  A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. , 2012, Angewandte Chemie.

[204]  Hyun-Wook Lee,et al.  Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents , 2014, Nature Communications.

[205]  Jeong Jae Wie,et al.  The use of elemental sulfur as an alternative feedstock for polymeric materials. , 2013, Nature chemistry.

[206]  Shinichi Komaba,et al.  Study on polymer binders for high-capacity SiO negative electrode of Li-Ion batteries , 2011 .

[207]  Takuya Mori,et al.  High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements , 2014, Scientific Reports.

[208]  Jang Wook Choi,et al.  Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. , 2013, Nano letters.

[209]  Ram A. Sharma,et al.  Investigation of lithium utilization from a lithium--silicon electrode. [Liâ Si, Liââ Siâ, Liââ Siâ] , 1977 .

[210]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[211]  Doron Aurbach,et al.  Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance , 2013 .

[212]  Guosong Hong,et al.  Advanced zinc-air batteries based on high-performance hybrid electrocatalysts , 2013, Nature Communications.

[213]  Hansu Kim,et al.  Dual-Size Silicon Nanocrystal-Embedded SiO(x) Nanocomposite as a High-Capacity Lithium Storage Material. , 2015, ACS nano.

[214]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[215]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[216]  Fan Zhang,et al.  Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries , 2012 .

[217]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[218]  Zhe Yuan,et al.  Hierarchical Free‐Standing Carbon‐Nanotube Paper Electrodes with Ultrahigh Sulfur‐Loading for Lithium–Sulfur Batteries , 2014 .

[219]  Linda F. Nazar,et al.  A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries , 2015 .

[220]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[221]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .