Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams.

We present the Iwasawa decomposition theorem for the group ${\rm Sp}(2, R)$ in a form particularly suited to first-order optics, and we exploit it to develop a uniform description of the shape-invariant propagation of several families of optical beams. Both coherent and partially coherent beams are considered. We analyze the Hermite-Gaussian beam as an example of the fully coherent case. For the partially coherent case, we treat the Gaussian Schell model beams and the recently discovered twisted Gaussian Schell model beams, both of which are axially symmetric, and also the axially nonsymmetric Gori-Guattari beams. The key observation is that by judicious choice of a free-scale parameter available in the Iwasawa decomposition, appropriately in each case, the one potentially nontrivial factor in the decomposition can be made to act trivially. Invariants of the propagation process are discussed. Shape-invariant propagation is shown to be equivalent to invariance under fractional Fourier transformation.

[1]  Franco Gori,et al.  An example of a Collett-Wolf source , 1979 .

[2]  F. Gori,et al.  A new type of optical fields , 1983 .

[3]  G. Agarwal,et al.  An experiment for the study of the Gouy effect for the squeezed vacuum , 1993 .

[4]  Mukunda,et al.  Bargmann invariant and the geometry of the Güoy effect. , 1993, Physical review letters.

[5]  E. Collett,et al.  Partially coherent sources which produce the same far-field intensity distribution as a laser , 1978 .

[6]  Herwig Kogelnik,et al.  Imaging of optical modes — resonators with internal lenses , 1965 .

[7]  R. Simon,et al.  Generalized rays in first-order optics: Transformation properties of Gaussian Schell-model fields , 1984 .

[8]  B. Saleh Intensity distribution due to a partially coherent field and the Collett-Wolf equivalence theorem in the Fresnel zone , 1979 .

[9]  E. Wolf,et al.  Radiation from anisotropic Gaussian Schell-model sources. , 1982, Optics letters.

[10]  Beam Quality Dependence on the Coherence Length of Gaussian Schell-model fields Propagating Through ABCD Optical Systems , 1992 .

[11]  D. Marcuse Light transmission optics , 1972 .

[12]  H. Bacry,et al.  Metaplectic group and Fourier optics , 1981 .

[13]  E. Sudarshan,et al.  Realization of First Order Optical Systems Using Thin Lenses , 1983 .

[14]  H. Ozaktas,et al.  Fourier transforms of fractional order and their optical interpretation , 1993 .

[15]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[16]  Dietrich Marcuse,et al.  Formal Quantum Theory of Light Rays , 1969 .

[17]  John T. Foley,et al.  Directionality of Gaussian Schell-model beams (A) , 1978 .

[18]  Ronald J. Sudol,et al.  Propagation parameters of gaussian Schell-model beams , 1982 .

[19]  John T. Sheridan,et al.  Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. , 1994, Optics letters.

[20]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[21]  Rolf Gase,et al.  The Multimode Laser Radiation as a Gaussian Schell Model Beam , 1991 .

[22]  E. Sudarshan,et al.  Partially coherent beams and a generalized ABCD-law , 1988 .

[23]  J. Shamir,et al.  Root and power transformations in optics , 1995 .

[24]  G. S. Agarwal,et al.  A simple realization of fractional Fourier transform and relation to harmonic oscillator Green's function , 1994 .

[25]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[26]  A. Friberg,et al.  Interpretation and experimental demonstration of twisted Gaussian Schell-model beams , 1994 .

[27]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[28]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum , 1993 .

[29]  Dario Ambrosini,et al.  Twisted Gaussian Schell-model Beams: A Superposition Model , 1994 .

[30]  R. Gase Methods of quantum mechanics applied to partially coherent light beams , 1994 .

[31]  R. Simon,et al.  Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams , 1995 .

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  K. Sundar,et al.  Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics , 1993 .

[34]  R. Simon,et al.  Twisted Gaussian Schell-model beams , 1993 .

[35]  F. Gori,et al.  Shape-invariance range of a light beam. , 1996, Optics letters.

[36]  Jari Turunen,et al.  Imaging of Gaussian Schell-model sources , 1988 .

[37]  A. Schawlow Lasers , 2018, Acta Ophthalmologica.

[38]  Horst Weber,et al.  Wave Optical Analysis of the Phase Space Analyser , 1992 .

[39]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[40]  Ari T. Friberg,et al.  Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems , 1996 .

[41]  Expansion of the cross-spectral density function of general fields and its application to beam characterization , 1992 .

[42]  W. H. Carter,et al.  An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals , 1978 .

[43]  Mukunda,et al.  Anisotropic Gaussian Schell-model beams: Passage through optical systems and associated invariants. , 1985, Physical review. A, General physics.

[44]  R. Simon,et al.  The Two-Dimensional Symplectic and Metaplectic Groups and Their Universal Cover , 1993 .

[45]  E Collett,et al.  Is complete spatial coherence necessary for the generation of highly directional light beams? , 1978, Optics letters.

[46]  Henri H. Arsenault,et al.  Factorization of the transfer matrix for symmetrical optical systems , 1983 .