Bayesian Inference with Nonlinear Generative Models: Comments on Secure Learning

Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature. This work aims to bring attention to these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate the asymptotic statistical decoupling of Bayesian inference algorithms and specify the decoupled setting for a given nonlinear model. The replica solution depicts that strictly nonlinear models establish an all-or-nothing phase transition: There exists a critical load at which the optimal Bayesian inference changes from being perfect to an uncorrelated learning. This finding leads to design of a new secure coding scheme which achieves the secrecy capacity of the wiretap channel. This interesting result implies that strictly nonlinear generative models are perfectly secured without any secure coding. We justify this latter statement through the analysis of an illustrative model for perfectly secure and reliable inference.

[1]  F. Krzakala,et al.  Secure Coding via Gaussian Random Fields , 2022, 2022 IEEE International Symposium on Information Theory (ISIT).

[2]  F. Krzakala,et al.  Perturbative construction of mean-field equations in extensive-rank matrix factorization and denoising , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[3]  N. Macris,et al.  Statistical limits of dictionary learning: random matrix theory and the spectral replica method , 2021, Physical review. E.

[4]  H. Vincent Poor,et al.  Detection of Spatially Modulated Signals via RLS: Theoretical Bounds and Applications , 2020, IEEE Transactions on Wireless Communications.

[5]  Dmitry Panchenko,et al.  Performance of Bayesian linear regression in a model with mismatch , 2021, ArXiv.

[6]  F. Krzakala,et al.  Learning Gaussian Mixtures with Generalised Linear Models: Precise Asymptotics in High-dimensions , 2021, NeurIPS.

[7]  Optimizing Mean Field Spin Glasses with External Field , 2021, 2105.03506.

[8]  Ralf R. Müller,et al.  On Approximation, Bounding & Exact Calculation of Average Block Error Probability for Random Code Ensembles , 2021, IEEE Transactions on Communications.

[9]  Jean-Christophe Mourrat,et al.  Statistical inference of finite-rank tensors , 2021, Annales Henri Lebesgue.

[10]  Ilias Zadik,et al.  It was "all" for "nothing": sharp phase transitions for noiseless discrete channels , 2021, COLT.

[11]  Andrea Montanari,et al.  Optimization of mean-field spin glasses , 2020, The Annals of Probability.

[12]  Christos Thrampoulidis,et al.  Theoretical Insights Into Multiclass Classification: A High-dimensional Asymptotic View , 2020, NeurIPS.

[13]  Jean Barbier,et al.  Mutual information for low-rank even-order symmetric tensor estimation , 2020 .

[14]  Jean Barbier,et al.  All-or-nothing statistical and computational phase transitions in sparse spiked matrix estimation , 2020, NeurIPS.

[15]  Florent Krzakala,et al.  Phase retrieval in high dimensions: Statistical and computational phase transitions , 2020, NeurIPS.

[16]  Andrea Montanari,et al.  The estimation error of general first order methods , 2020, COLT.

[17]  Florent Krzakala,et al.  The role of regularization in classification of high-dimensional noisy Gaussian mixture , 2020, ICML.

[18]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[19]  F. Krzakala,et al.  Exact asymptotics for phase retrieval and compressed sensing with random generative priors , 2019, MSML.

[20]  Nicolas Macris,et al.  Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation , 2017, IEEE Transactions on Information Theory.

[21]  Marc Lelarge,et al.  Asymptotic Bayes Risk for Gaussian Mixture in a Semi-Supervised Setting , 2019, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[22]  Galen Reeves,et al.  The All-or-Nothing Phenomenon in Sparse Linear Regression , 2019, COLT.

[23]  Ali Bereyhi,et al.  GLSE Precoders for Massive MIMO Systems: Analysis and Applications , 2018, IEEE Transactions on Wireless Communications.

[24]  Florent Krzakala,et al.  Approximate survey propagation for statistical inference , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[25]  Yan V. Fyodorov,et al.  A Spin Glass Model for Reconstructing Nonlinearly Encrypted Signals Corrupted by Noise , 2018, Journal of Statistical Physics.

[26]  Nicolas Macris,et al.  Optimal errors and phase transitions in high-dimensional generalized linear models , 2017, Proceedings of the National Academy of Sciences.

[27]  Ali Bereyhi,et al.  Statistical Mechanics of MAP Estimation: General Replica Ansatz , 2016, IEEE Transactions on Information Theory.

[28]  Ilias. Zadik,et al.  Computational and statistical challenges in high dimensional statistical models , 2019 .

[29]  Ali Bereyhi,et al.  Theoretical Bounds on MAP Estimation in Distributed Sensing Networks , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[30]  Afonso S. Bandeira,et al.  Notes on computational-to-statistical gaps: predictions using statistical physics , 2018, Portugaliae Mathematica.

[31]  Nicolas Macris,et al.  The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[32]  Ali Bereyhi,et al.  Maximum-A-Posteriori Signal Recovery with Prior Information: Applications to Compressive Sensing , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[33]  Ali Bereyhi,et al.  Replica symmetry breaking in compressive sensing , 2017, 2017 Information Theory and Applications Workshop (ITA).

[34]  Marc Lelarge,et al.  Fundamental limits of symmetric low-rank matrix estimation , 2016, Probability Theory and Related Fields.

[35]  Ali Bereyhi,et al.  RSB decoupling property of MAP estimators , 2016, 2016 IEEE Information Theory Workshop (ITW).

[36]  Nicolas Macris,et al.  The mutual information in random linear estimation , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[37]  Florent Krzakala,et al.  Statistical physics of inference: thresholds and algorithms , 2015, ArXiv.

[38]  Guillermo Sapiro,et al.  Compressive Sensing by Learning a Gaussian Mixture Model From Measurements , 2015, IEEE Transactions on Image Processing.

[39]  Andrea Montanari,et al.  Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques , 2014, ArXiv.

[40]  Florent Krzakala,et al.  Replica analysis and approximate message passing decoder for superposition codes , 2014, 2014 IEEE International Symposium on Information Theory.

[41]  Nicolas Macris,et al.  Threshold Saturation for Spatially Coupled LDPC and LDGM Codes on BMS Channels , 2013, IEEE Transactions on Information Theory.

[42]  Amin Gohari,et al.  Achievability Proof via Output Statistics of Random Binning , 2012, IEEE Transactions on Information Theory.

[43]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[44]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[45]  Shlomo Shamai,et al.  Support Recovery With Sparsely Sampled Free Random Matrices , 2011, IEEE Transactions on Information Theory.

[46]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[47]  Adel Javanmard,et al.  State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling , 2012, ArXiv.

[48]  Jun Muramatsu,et al.  Construction of Codes for the Wiretap Channel and the Secret Key Agreement From Correlated Source Outputs Based on the Hash Property , 2012, IEEE Transactions on Information Theory.

[49]  Thilo Gross,et al.  Early Warning Signals for Critical Transitions: A Generalized Modeling Approach , 2011, PLoS Comput. Biol..

[50]  Ralf R. Müller,et al.  Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking , 2010, IEEE Transactions on Information Theory.

[51]  Sundeep Rangan,et al.  Asymptotic Analysis of MAP Estimation via the Replica Method and Applications to Compressed Sensing , 2009, IEEE Transactions on Information Theory.

[52]  Florent Krzakala,et al.  Statistical physics-based reconstruction in compressed sensing , 2011, ArXiv.

[53]  Francis Comets,et al.  Large Deviations and Applications , 2011, International Encyclopedia of Statistical Science.

[54]  Neri Merhav,et al.  Statistical Physics and Information Theory , 2010, Found. Trends Commun. Inf. Theory.

[55]  Ralf R. Müller,et al.  Analysis of large MIMO DS-CDMA systems with imperfect CSI and spatial correlation , 2010, 2010 IEEE International Symposium on Information Theory.

[56]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[57]  S. Franz,et al.  Self-Averaging Identities for Random Spin Systems , 2007, 0705.2978.

[58]  Nicolas Macris,et al.  Proof of replica formulas in the high noise regime for communication using LDGM codes , 2008, 2008 IEEE Information Theory Workshop.

[59]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[60]  M. Talagrand Free energy of the spherical mean field model , 2006 .

[61]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[62]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[63]  Ralf R. Müller,et al.  On the capacity loss due to separation of detection and decoding , 2004, IEEE Transactions on Information Theory.

[64]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[65]  Toshiyuki Tanaka,et al.  A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors , 2002, IEEE Trans. Inf. Theory.

[66]  A. Guionnet,et al.  Large Deviations Asymptotics for Spherical Integrals , 2002 .

[67]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[68]  Ralf R. Müller Multiuser receivers for randomly spread signals: Fundamental limits with and without decision-feedback , 2001, IEEE Trans. Inf. Theory.

[69]  Sergio Verdú,et al.  Optimum asymptotic multiuser efficiency of randomly spread CDMA , 2000, IEEE Trans. Inf. Theory.

[70]  Shlomo Shamai,et al.  Spectral Efficiency of CDMA with Random Spreading , 1999, IEEE Trans. Inf. Theory.

[71]  Y. Iba The Nishimori line and Bayesian statistics , 1998, cond-mat/9809190.

[72]  D. Saad,et al.  Statistical mechanics of error-correcting codes , 1999 .

[73]  S. Kak Information, physics, and computation , 1996 .

[74]  N. Sourlas Spin Glasses, Error-Correcting Codes and Finite-Temperature Decoding , 1994 .

[75]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[76]  T. R. Kirkpatrick,et al.  Dynamics of the structural glass transition and the p-spin-interaction spin-glass model. , 1987, Physical review letters.

[77]  P. Priouret,et al.  An introduction to the theory of large deviations , 1986 .

[78]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[79]  E. Gardner Spin glasses with p-spin interactions , 1985 .

[80]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[81]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[82]  Thomas M. Cover,et al.  A Proof of the Data Compression Theorem of Slepian and Wolf for Ergodic Sources , 1971 .

[83]  K. Adkins Theory of spin glasses , 1974 .

[84]  Aaron D. Wyner,et al.  Recent results in the Shannon theory , 1974, IEEE Trans. Inf. Theory.

[85]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[86]  Sur les valeurs moyennes des fonctions , 1944 .