Intergranularfailure in steel: the role of grain-boundary composition

AbstractThe circumstances under which steels exhibit intergranular fracture can be classified into four general categories: (1) owing to the presence of certain secondary phases at the grain boundaries; (2) owing to thermal treatments which cause impurity segregation to the grain boundaries without the precipitation of an observable second phase; (3) owing to the action of certain environments; and (4) owing to a combination of stress and high temperatures. In this paper each of these categories and their effects on material properties are reviewed. How the chemical composition of the grain boundary influences and induces intergranular cracking is discussed in detail for all four cases.

[1]  A. H. Ucisik,et al.  The influence of intercritical heat treatment on the temper embrittlement susceptibility of aP-Doped Ni-Cr steel , 1978 .

[2]  Robert P. Wei,et al.  Gaseous hydrogen embrittlement of high strength steels , 1977 .

[3]  C. Mcmahon,et al.  The influence of Mo on P-lnduced temper embrittlement in Ni-Cr steel , 1977 .

[4]  C. Mcmahon,et al.  Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen , 1977 .

[5]  C. Mcmahon,et al.  Temper embrittlement of Ni-Cr steel by antimony I. Embrittlement at low carbon concentration , 1976 .

[6]  H. Arup,et al.  Stress Corrosion Cracking of Mild Steel in Ammonia Vapor Above Liquid Ammonia , 1976 .

[7]  J. Rivière,et al.  An AES study of temper embrittlement in a low alloy steel , 1976 .

[8]  C. R. Helms,et al.  Hydrogen dissociation poisons and hydrogen embrittlement , 1976 .

[9]  W. C. Hagel,et al.  Effect of trace elements, molybdenum, and intercritical heat treatment on temper embrittlement of 2-1/4Cr-1 Mo steel , 1976 .

[10]  C. Mcmahon Intergranular fracture in steels , 1976 .

[11]  S. Dinda,et al.  The effect of grain boundary segregation on liquid metal induced embrittlement of steel , 1976 .

[12]  C. Mcmahon,et al.  Temper embrittlement of Ni-Cr steel by antimony:II. Effects of addition of titanium , 1976 .

[13]  C. Mcmahon,et al.  Temper embrittlement of Ni-Cr Steels by phosphorus , 1976 .

[14]  D. Vermilyea,et al.  Effect of Titanium on the Susceptibility of Mild Steel to Caustic Cracking , 1976 .

[15]  W. Gerberich,et al.  Grain Size Effects in Hydrogen-Assisted Cracking , 1976 .

[16]  J. Landes,et al.  Subcritical Crack Growth of a low alloy steel in gaseous hydrogen sulfide , 1976 .

[17]  I. Bernstein Chapter IX – RESISTING HYDROGEN EMBRITTLEMENT , 1976 .

[18]  G. S. Ansell,et al.  Alloy and microstructural design , 1976 .

[19]  R. Viswanathan,et al.  Effect of microstructure on the temper embrittlement of Cr-Mo-V steels , 1975 .

[20]  M. Guttmann Equilibrium segregation in a ternary solution: A model for temper embrittlement , 1975 .

[21]  Martin P. Seah,et al.  Interface adsorption, embrittlement and fracture in metallurgy: A review , 1975 .

[22]  D. Stein,et al.  Role of Mn and Si in temper embrittlement of low alloy steels , 1975 .

[23]  R. Viswanathan Effect of Sb, P, Sn and B on the microstructure and creep properties of normalized and tempered 1.25 Cr−0.5 Mo Steels , 1975 .

[24]  A. Joshi Segregation at selective grain boundaries and its role in temper embrittlement of low alloy steels , 1975 .

[25]  J. Scully Stress corrosion crack propagation: A constant charge criterion , 1975 .

[26]  Kazuhiro Suzuki,et al.  Effects of Copper and Phosphorus on Temper Embrittlement of Mn–Mo–Ni Low Alloy Steel (ASTM A533–B) , 1975 .

[27]  C. Mcmahon,et al.  Intergranular embrittlement of iron-carbon alloys by impurities , 1974, Metallurgical and Materials Transactions B.

[28]  R. Viswanathan Temper embrittlement and creep embrittlement of 1.25 Cr-0.5 Mo steels containing Sb, Sn, P and B as impurities , 1974 .

[29]  R. Viswanathan,et al.  Effect of heat treatment on temper embrittlement susceptivility of Cr-Mo-V steels , 1974 .

[30]  S. Bush Structural Materials for Nuclear Power Plants , 1974 .

[31]  R. A. Oriani,et al.  Equilibrium aspects of hydrogen-induced cracking of steels , 1974 .

[32]  A. Perry Cavitation in creep , 1974 .

[33]  R. Wei,et al.  Gaseous hydrogen assisted crack growth in 18 nickel maraging steels , 1974 .

[34]  R. Staehle,et al.  Effect of Arsenic upon the Entry of Hydrogen into Mild Steel as Determined at Constant Electrochemical Potential , 1974 .

[35]  W. C. Johnson,et al.  A study of grain boundary segregants in thermally embrittled maraging steel , 1974, Metallurgical and Materials Transactions B.

[36]  C. Mcmahon,et al.  New information on the mechanism of temper embrittlement of alloy steels , 1974, Metallurgical and Materials Transactions B.

[37]  C. Mcmahon,et al.  The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel , 1974, Metallurgical and Materials Transactions B.

[38]  R. Latanision,et al.  The intergranular embrittlement of nickel by hydrogen: The effect of grain boundary segregation , 1974, Metallurgical and Materials Transactions B.

[39]  J. Ritter,et al.  Embrittlement of the weld heat-affected zone in a Mn-Cr-Mo-V steel , 1974 .

[40]  J. Rice,et al.  The shape of intergranular creep cracks gro′ing by surface diffusion , 1973 .

[41]  C. Mcmahon,et al.  Fracture of alloy steels by intergranular microvoid coalescence as influenced by composition and heat treatment , 1973 .

[42]  M. Guttmann,et al.  The influence of the austenitizing treatment on temper embrittlement , 1973 .

[43]  A. J. McEvily,et al.  Fatigue at elevated temperatures , 1973 .

[44]  J. Knott,et al.  Segregation Effects and the Toughness of Untempered Low-Alloy Steels , 1972 .

[45]  A. Joshi,et al.  Chemistry of Grain Boundaries and Its Relation to Intergranular Corrosion of Austenitic Stainless Steel , 1972 .

[46]  R. Viswanathan,et al.  Long-time isothermal temper embrittlement in Ni-Cr-Mo-V steels , 1972 .

[47]  D. Newhouse Temper embrittlement of alloy steels : a symposium presented at the seventy-fourth annual meeting, American Society for Testing and Materials , 1972 .

[48]  D. Kalish,et al.  Thermal embrittlement of 18 Ni(350) maraging steel , 1971 .

[49]  M. H. Kamdar,et al.  ADSORPTION-INDUCED BRITTLE FRACTURE IN LIQUID-METAL ENVIRONMENTS , 1971 .

[50]  S. S. Manson,et al.  Metal fatigue damage--mechanism, detection, avoidance, and repair : With special reference to gas turbine components , 1971 .

[51]  J. Payer,et al.  Dissolution Behavior of Fe-Fe3 Structures as a Function of pH, Potential, and Anion – An Electron Microscopic Study , 1971 .

[52]  I. Bernstein The role of hydrogen in the embrittlement of iron and steel , 1970 .

[53]  G. J. Spaeder Impact transition behavior of high-purity l8Ni maraging steel , 1970 .

[54]  D. Mclean,et al.  Influence of Interface Energy on Creep Rupture , 1970 .

[55]  M. R. Hawkesworth,et al.  Review: Radiography with neutrons , 1969 .

[56]  J. P. Smith,et al.  Effect of helium gas bubbles on the creep ductility of an austenitic alloy , 1969 .

[57]  H. Brager,et al.  HELIUM EMBRITTLEMENT IN TYPE 304 STAINLESS STEEL. , 1968 .

[58]  J. Armijo Intergranular Corrosion of Nonsensitized Austenitic Stainless Steels , 1968 .

[59]  J. Flis,et al.  Transmission electron microscopical study of corrosion and stress-corrosion of mild steel in nitrate solution , 1968 .

[60]  M. Henthorne,et al.  Some Aspects of the Influence of Structure upon Stress-Corrosion Cracking and Grain Boundary Corrosion in Mild Steels , 1967 .

[61]  J. Weir Radiation Damage, at High Temperatures , 1967, Science.

[62]  R. B. Gunia Effects of Residual Elements on Properties of Austenitic Stainless Steels , 1967 .

[63]  J. Barnby,et al.  Nucleation of Grain-Boundary Cavities during High-Temperature Creep , 1967 .

[64]  A. Bement Effects of Minor Constituents on Irradiation Damage to Austenitic Stainless Steels , 1967 .

[65]  R. A. Oriani,et al.  The Thermodynamics of Stressed Solids , 1966 .

[66]  E. D. Hondros,et al.  The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[67]  R. Barnes,et al.  Embrittlement of Stainless Steels and Nickel-Based Alloys at High Temperature Induced by Neutron Radiation , 1965, Nature.

[68]  T. Nishizawa,et al.  Solubility of Phosphorus in α and γ-Iron , 1965 .

[69]  J. R. Low The fracture of metals , 1963 .

[70]  H. Coriou,et al.  Aspect electrochimique de la corrosion d'aciers inoxydables austenitiques en milieu nitrique et en presence de chrome hexavalent☆ , 1961 .

[71]  W. Rostoker,et al.  Embrittlement by Liquid Metals , 1960 .

[72]  B. Hopkinson,et al.  Chromium Distribution around Grain Boundary Carbides found in Austenitic Stainless Steel , 1959, Nature.

[73]  D. Hull,et al.  The growth of grain-boundary voids under stress , 1959 .

[74]  M. Streicher General and Intergranular Corrosion of Austenitic Stainless Steels in Acids Effect of Cations in the Acids and the lnfluence of Heat Treatment and Grain Size of the Steel , 1959 .

[75]  C. Crussard,et al.  Quelques nouvelles applications de la microfractographie , 1957 .

[76]  R. M. Cook,et al.  Effects of Trace Elements on Embrittlement of Steels , 1956, Nature.

[77]  W. D. Robertson Stress corrosion cracking and embrittlement , 1956 .

[78]  J. Greenwood,et al.  Intergranular cavitation in stressed metals , 1954 .

[79]  J. Hochmann Influence de la fusion sous vide sur les propriétés des ferrites à 25 % de chrome , 1951 .

[80]  M. Georges Vidal,et al.  Sur la fragilité de revenu des aciers au Chrome, au Molybdène, au Tungstène , 1945 .