On semigroup algebras with rational exponents

Abstract In this paper, a semigroup algebra consisting of polynomial expressions with coefficients in a field F and exponents in an additive submonoid M of is called a Puiseux algebra and denoted by Here we study the atomic structure of Puiseux algebras. To begin with, we answer the isomorphism problem for the class of Puiseux algebras, that is, we show that for a field F if two Puiseux algebras and are isomorphic, then the monoids M 1 and M 2 must be isomorphic. Then we construct three classes of Puiseux algebras satisfying the following well-known atomic properties: the ACCP property, the bounded factorization property, and the finite factorization property. We show that there are bounded factorization Puiseux algebras with extremal systems of sets of lengths, which allows us to prove that Puiseux algebras cannot be determined (up to isomorphism) by their arithmetic of lengths. Finally, we give a full description of the seminormal closure, root closure, and complete integral closure of a Puiseux algebra, and we use this description to provide a class of antimatter Puiseux algebras (i.e., Puiseux algebras containing no irreducibles).

[1]  G. Higman,et al.  The Units of Group‐Rings , 1940 .

[2]  Thomas H. Parker,et al.  Divisibility properties in semigroup rings. , 1974 .

[3]  F. Gotti Increasing positive monoids of ordered fields are FF-monoids , 2016, Journal of Algebra.

[4]  Florian Kainrath Factorization in Krull monoids with infinite class group , 1999 .

[5]  Hoyt D. Warner,et al.  Irreducible divisors in domains of finite character , 1975 .

[6]  David F. Anderson,et al.  Factorization in Integral Domains , 1990 .

[7]  David F. Anderson,et al.  Bounded and finite factorization domains , 2020, 2010.02722.

[8]  Anne Grams,et al.  Atomic rings and the ascending chain condition for principal ideals , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .

[10]  Roswitha Rissner,et al.  Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields , 2017, Journal of Algebra.

[11]  R. Gilmer,et al.  The group of units of a commutative semigroup ring , 1979 .

[12]  S. Chapman,et al.  Factorization invariants of Puiseux monoids generated by geometric sequences , 2019, Communications in Algebra.

[13]  J. Coykendall,et al.  On the atomicity of monoid algebras , 2019, Journal of Algebra.

[14]  D. D. Anderson,et al.  Long Length Functions , 2015 .

[15]  Ryan Gipson,et al.  FOR WHICH PUISEUX MONOIDS ARE THEIR MONOID RINGS OVER FIELDS AP? , 2020 .

[16]  Marly Gotti,et al.  Atomicity and density of Puiseux monoids , 2020, 2004.10329.

[17]  A. Geroldinger,et al.  A realization theorem for sets of lengths in numerical monoids , 2017, Forum Mathematicum.

[18]  Maria Bras-Amor'os,et al.  Increasingly Enumerable Submonoids of : Music Theory as a Unifying Theme , 2019, Am. Math. Mon..

[19]  Alfred Geroldinger,et al.  Non-Unique Factorizations : Algebraic, Combinatorial and Analytic Theory , 2006 .

[20]  Alfred Geroldinger,et al.  On strongly primary monoids, with a focus on Puiseux monoids , 2021, Journal of Algebra.

[21]  Isomorphisms of one-relator semigroup algebras , 1995 .

[22]  D. D. Anderson,et al.  Monoid Domain Constructions of Antimatter Domains , 2007 .

[23]  Combinatorics of syzygies for semigroup algebras , 1998 .

[24]  R. Gilmer,et al.  Commutative Semigroup Rings , 1984 .

[25]  Scott T. Chapman,et al.  When Is a Puiseux Monoid Atomic? , 2020, Am. Math. Mon..

[26]  J. Coykendall,et al.  On integral domains with no atoms , 1999 .

[27]  J. Gubeladze The isomorphism problem for commutative monoid rings , 1998 .

[28]  F. Halter-Koch Finiteness theorems for factorizations , 1992 .

[29]  F. Gotti Irreducibility and Factorizations in Monoid Rings , 2019, Numerical Semigroups.

[30]  F. Gotti Systems of sets of lengths of Puiseux monoids , 2017, Journal of Pure and Applied Algebra.

[31]  F. Gotti Puiseux monoids and transfer homomorphisms , 2017, Journal of Algebra.

[32]  Hwankoo Kim FACTORIZATION IN MONOID DOMAINS , 2001 .

[33]  A. Geroldinger Sets of Lengths , 2015, Am. Math. Mon..

[34]  S. Sehgal On the Isomorphism of Integral Group Rings. I , 1969, Canadian Journal of Mathematics.

[35]  N. Baeth,et al.  Factorizations in upper triangular matrices over information semialgebras , 2020, 2002.09828.

[36]  F. Gotti,et al.  Atomicity and boundedness of monotone Puiseux monoids , 2016, 1608.04044.