Bootstrapping Non-invertible Symmetries

Using the numerical modular bootstrap, we constrain the space of 1+1d CFTs with a finite non-invertible global symmetry described by a fusion category $\mathcal{C}$. We derive universal and rigorous upper bounds on the lightest $\mathcal{C}$-preserving scalar local operator for fusion categories such as the Ising and Fibonacci categories. These numerical bounds constrain the possible robust gapless phases protected by a non-invertible global symmetry, which commonly arise from microscopic lattice models such as the anyonic chains. We also derive bounds on the lightest $\mathcal{C}$-violating local operator. Our bootstrap equations naturally arise from a"slab construction", where the CFT is coupled to the 2+1d Turaev-Viro TQFT, also known as the Symmetry TFT.

[1]  D. Mazáč,et al.  Bootstrapping boundaries and branes , 2021, Journal of High Energy Physics.

[2]  Nathan Benjamin,et al.  Scalar modular bootstrap and zeros of the Riemann zeta function , 2022, Journal of High Energy Physics.

[3]  K. Intriligator,et al.  Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond , 2022, 2205.09545.

[4]  X. Wen,et al.  Holographic theory for the emergence and the symmetry protection of gaplessness and for continuous phase transitions , 2022, 2205.06244.

[5]  Ho Tat Lam,et al.  Noninvertible Global Symmetries in the Standard Model. , 2022, Physical review letters.

[6]  Y. Hayashi,et al.  Non-invertible self-duality defects of Cardy-Rabinovici model and mixed gravitational anomaly , 2022, Journal of High Energy Physics.

[7]  Yijian Zou,et al.  Operator fusion from wave-function overlap: Universal finite-size corrections and application to the Haagerup model , 2022, Physical Review B.

[8]  I. M. Burbano,et al.  Duality defects in E8 , 2021, Journal of High Energy Physics.

[9]  Yunqin Zheng,et al.  Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories. , 2021, Physical review letters.

[10]  F. Verstraete,et al.  Critical Lattice Model for a Haagerup Conformal Field Theory. , 2021, Physical review letters.

[11]  Tzu-Chen Huang,et al.  Numerical Evidence for a Haagerup Conformal Field Theory. , 2021, Physical review letters.

[12]  Z. Komargodski,et al.  Higher central charges and topological boundaries in 2+1-dimensional TQFTs , 2021, SciPost Physics.

[13]  Tzu-Chen Huang,et al.  Topological field theory with Haagerup symmetry , 2021, Journal of Mathematical Physics.

[14]  Yunqin Zheng,et al.  Non-invertible symmetries of N = 4 SYM and twisted compactification , 2022 .

[15]  Tzu-Chen Huang,et al.  Construction of two-dimensional topological field theories with non-invertible symmetries , 2021, Journal of High Energy Physics.

[16]  A. Fitzpatrick,et al.  Harmonic analysis of 2d CFT partition functions , 2021, Journal of High Energy Physics.

[17]  X. Wen,et al.  A unified view on symmetry, anomalous symmetry and non-invertible gravitational anomaly , 2021, 2106.02069.

[18]  Tom Rudelius,et al.  Non-invertible global symmetries and completeness of the spectrum , 2021, Journal of High Energy Physics.

[19]  Ying-Hsuan Lin,et al.  ZN symmetries, anomalies, and the modular bootstrap , 2021, Physical Review D.

[20]  Y. Tanizaki,et al.  Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond N-ality , 2021, 2101.02227.

[21]  Ying-Hsuan Lin,et al.  Lorentzian dynamics and factorization beyond rationality , 2020, Journal of High Energy Physics.

[22]  A. Shapere,et al.  Quantum stabilizer codes, lattices, and CFTs , 2020, Journal of High Energy Physics.

[23]  A. Shapere,et al.  Solutions of Modular Bootstrap Constraints from Quantum Codes. , 2020, Physical review letters.

[24]  Z. Komargodski,et al.  Symmetries and strings of adjoint QCD2 , 2020, Journal of High Energy Physics.

[25]  D. Gaiotto,et al.  Orbifold groupoids , 2020, Journal of High Energy Physics.

[26]  Ying-Hsuan Lin,et al.  Duality defect of the monster CFT , 2019, Journal of Physics A: Mathematical and Theoretical.

[27]  S. Yamaguchi,et al.  Non-invertible topological defects in 4-dimensional Z 2 pure lattice gauge theory , 2021 .

[28]  L. Alday,et al.  On the spectrum of pure higher spin gravity , 2020, Journal of High Energy Physics.

[29]  R. Mong,et al.  Topological Defects on the Lattice: Dualities and Degeneracies , 2020, 2008.08598.

[30]  Tom Rudelius,et al.  Topological operators and completeness of spectrum in discrete gauge theories , 2020, Journal of High Energy Physics.

[31]  David de Laat,et al.  High-dimensional sphere packing and the modular bootstrap , 2020, Journal of High Energy Physics.

[32]  Ying-Hsuan Lin,et al.  Lessons from the Ramond sector , 2020, 2005.02394.

[33]  Sridip Pal,et al.  High energy modular bootstrap, global symmetries and defects , 2020, Journal of High Energy Physics.

[34]  Sridip Pal,et al.  Beurling-Selberg extremization and modular bootstrap at high energies , 2020, SciPost Physics.

[35]  H. Ooguri,et al.  Twist gap and global symmetry in two dimensions , 2020, Physical Review D.

[36]  L. Alday,et al.  Rademacher expansions and the spectrum of 2d CFT , 2019, Journal of High Energy Physics.

[37]  X. Wen,et al.  Topological transition on the conformal manifold , 2019, 1909.01425.

[38]  Ryan Thorngren Anomalies and Bosonization , 2018, Communications in Mathematical Physics.

[39]  Yuji Tachikawa On gauging finite subgroups , 2017, SciPost Physics.

[40]  X. Wen,et al.  Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions , 2019, 1912.13492.

[41]  Yifan Wang,et al.  Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases , 2019, 1912.02817.

[42]  K. Ohmori,et al.  Decorated Z2 symmetry defects and their time-reversal anomalies , 2019, 1910.14046.

[43]  Sridip Pal,et al.  Tauberian-Cardy formula with spin , 2019, 1910.07727.

[44]  H. Ooguri,et al.  Light-cone modular bootstrap and pure gravity , 2019, Physical Review D.

[45]  X. Wen,et al.  Noninvertible anomalies and mapping-class-group transformation of anomalous partition functions , 2019, Physical Review Research.

[46]  Sridip Pal,et al.  Bounds on the density of states and the spectral gap in CFT2 , 2019, 1905.12636.

[47]  Thomas Hartman,et al.  Sphere packing and quantum gravity , 2019, Journal of High Energy Physics.

[48]  Baur Mukhametzhanov,et al.  Modular invariance, tauberian theorems and microcanonical entropy , 2019, Journal of High Energy Physics.

[49]  Ying-Hsuan Lin,et al.  Anomalies and bounds on charged operators , 2019, Physical Review D.

[50]  Sungjay Lee,et al.  Modular constraints on superconformal field theories , 2018, Journal of High Energy Physics.

[51]  S. Rychkov,et al.  The conformal bootstrap: Theory, numerical techniques, and applications , 2018, Reviews of Modern Physics.

[52]  Y. Wang,et al.  Topological defect lines and renormalization group flows in two dimensions , 2018, Journal of High Energy Physics.

[53]  S. Collier,et al.  Genus two modular bootstrap , 2017, Journal of High Energy Physics.

[54]  R. Mahajan,et al.  Parity and the modular bootstrap , 2018, SciPost Physics.

[55]  Ying-Hsuan Lin,et al.  Bootstrapping the spectral function: on the uniqueness of Liouville and the universality of BTZ , 2017, Journal of High Energy Physics.

[56]  Ying-Hsuan Lin,et al.  Modular bootstrap revisited , 2016, Journal of High Energy Physics.

[57]  Ethan Dyer,et al.  Constraints on flavored 2d CFT partition functions , 2017, 1709.01533.

[58]  Sungjay Lee,et al.  Modular constraints on conformal field theories with currents , 2017, 1708.08815.

[59]  Yuji Tachikawa,et al.  On finite symmetries and their gauging in two dimensions , 2017, 1704.02330.

[60]  A. Gromov,et al.  Anyonic Chains, Topological Defects, and Conformal Field Theory , 2017, Communications in Mathematical Physics.

[61]  D. Mazáč Analytic bounds and emergence of AdS2 physics from the conformal bootstrap , 2016, 1611.10060.

[62]  J. Boer,et al.  Universality of sparse d > 2 conformal field theory at large N , 2016, 1610.06186.

[63]  Reza Dastbasteh,et al.  Quantum stabilizer codes , 2017 .

[64]  G. Shiu,et al.  The Weak Gravity Conjecture in three dimensions , 2016, 1606.08438.

[65]  Ethan Dyer,et al.  Universal bounds on charged states in 2d CFT and 3d gravity , 2016, 1603.09745.

[66]  R. Mong,et al.  Topological defects on the lattice: I. The Ising model , 2016, 1601.07185.

[67]  G. Evenbly,et al.  Topological conformal defects with tensor networks , 2015, 1512.03846.

[68]  Edgar Shaghoulian Modular forms and a generalized Cardy formula in higher dimensions , 2015, 1508.02728.

[69]  I. Runkel,et al.  Orbifold completion of defect bicategories , 2012, 1210.6363.

[70]  A. Ocneanu Chirality for operator algebras , 2016 .

[71]  H. Ooguri,et al.  Reflections on conformal spectra , 2015, 1510.08772.

[72]  D. Simmons-Duffin,et al.  A semidefinite program solver for the conformal bootstrap , 2015, Journal of High Energy Physics.

[73]  Hao Zheng,et al.  Boundary-bulk relation for topological orders as the functor mapping higher categories to their centers , 2015, 1502.01690.

[74]  Nathan Seiberg,et al.  Generalized global symmetries , 2014, 1412.5148.

[75]  Joshua D. Qualls Universal bounds in even-spin CFTs , 2014, 1412.0383.

[76]  C. Keller,et al.  Universal spectrum of 2d conformal field theory in the large c limit , 2014, 1405.5137.

[77]  A. Shapere,et al.  Bounds on operator dimensions in 2D conformal field theories , 2013, 1312.0038.

[78]  C. Keller,et al.  Constraints on 2d CFT partition functions , 2013, 1307.6562.

[79]  D. Huse,et al.  Anyonic quantum spin chains: Spin-1 generalizations and topological stability , 2013, 1303.4290.

[80]  Yidun Wan,et al.  Twisted quantum double model of topological phases in two dimensions , 2012, 1211.3695.

[81]  H. Ooguri,et al.  Modular Constraints on Calabi-Yau Compactifications , 2012, 1209.4649.

[82]  S. Hellerman,et al.  Bounds for state degeneracies in 2D conformal field theory , 2010, 1007.0756.

[83]  S. Hellerman A universal inequality for CFT and quantum gravity , 2009, 0902.2790.

[84]  J. Fuchs,et al.  DEFECT LINES, DUALITIES AND GENERALISED ORBIFOLDS , 2009, 0909.5013.

[85]  M. Gaberdiel,et al.  Bulk flows in Virasoro minimal models with boundaries , 2009, 0907.2560.

[86]  R. Rattazzi,et al.  Bounding scalar operator dimensions in 4D CFT , 2008, 0807.0004.

[87]  J. Fuchs,et al.  Topological defects for the free boson CFT , 2007, 0705.3129.

[88]  M. Freedman,et al.  Interacting anyons in topological quantum liquids: the golden chain. , 2006, Physical review letters.

[89]  J. Fuchs,et al.  DUALITY AND DEFECTS IN RATIONAL CONFORMAL FIELD THEORY , 2006, hep-th/0607247.

[90]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[91]  J. Fröhlich,et al.  Kramers-wannier duality from conformal defects. , 2004, Physical review letters.

[92]  J. Fuchs,et al.  TFT construction of RCFT correlators I: Partition functions , 2002, hep-th/0204148.

[93]  Michael Mueger From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors , 2001, math/0111205.

[94]  J. Zuber,et al.  Generalised twisted partition functions , 2000, hep-th/0011021.

[95]  M. Izumi,et al.  The Structure of Sectors¶Associated with Longo–Rehren Inclusions¶I. General Theory , 2000 .

[96]  D. Tambara,et al.  Tensor Categories with Fusion Rules of Self-Duality for Finite Abelian Groups , 1998 .

[97]  V. Bazhanov,et al.  Thermodynamic Bethe ansatz for the subleading magnetic perturbation of the tricritical Ising model , 1997, hep-th/9703026.

[98]  M. D. W. Propitius Topological interactions in broken gauge theories , 1995, hep-th/9511195.

[99]  David E. Evans,et al.  ON OCNEANU'S THEORY OF ASYMPTOTIC INCLUSIONS FOR SUBFACTORS, TOPOLOGICAL QUANTUM FIELD THEORIES AND QUANTUM DOUBLES , 1995 .

[100]  G. Mussardo Off critical statistical models: Factorized scattering theories and bootstrap program , 1992 .

[101]  V. Pasquier,et al.  Quasi-Quantum Groups Related to Orbifold Models , 1991 .

[102]  E. Witten,et al.  Topological gauge theories and group cohomology , 1990 .

[103]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[104]  G. Moore,et al.  Taming the Conformal Zoo , 1989 .

[105]  E. Verlinde,et al.  Fusion Rules and Modular Transformations in 2D Conformal Field Theory , 1988 .

[106]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[107]  Gerard 't Hooft,et al.  Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking , 1979 .