AMultirateApproachforFluid-StructureInteraction Computation with Decoupled Methods

We investigate a multirate time step approach applied to decoupled methods in fluid and structure interaction(FSI) computation, where two different time steps are used for fluid and structure respectively. For illustration, the multirate technique is tested by the decoupled \beta-scheme. Numerical experiments show that the proposed approach is stable and retains the same order accuracy as the original single time step schemes, while with much less computational expense.

[1]  Jim Magiera,et al.  A multiple-time-step technique for coupled free flow and porous medium systems , 2014, J. Comput. Phys..

[2]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[3]  Thomas Wick,et al.  Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library , 2011 .

[4]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[5]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[6]  Mingchao Cai,et al.  Some multilevel decoupled algorithms for a mixed navier-stokes/darcy model , 2017, Advances in Computational Mathematics.

[7]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[8]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[9]  Martina Bukac,et al.  Stability and Convergence Analysis of the Extensions of the Kinematically Coupled Scheme for the Fluid-Structure Interaction , 2016, SIAM J. Numer. Anal..

[10]  W. Layton,et al.  A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .

[11]  Hans-Joachim Bungartz,et al.  Fluid-structure interaction : modelling, simulation, optimisation , 2006 .

[12]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[13]  E. Ramm,et al.  Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows , 2007 .

[14]  Xiaohong Zhu,et al.  Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..

[15]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[16]  Luca Gerardo-Giorda,et al.  Analysis and Optimization of Robin-Robin Partitioned Procedures in Fluid-Structure Interaction Problems , 2010, SIAM J. Numer. Anal..

[17]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[18]  Marina Vidrascu,et al.  Explicit Robin–Neumann schemes for the coupling of incompressible fluids with thin-walled structures , 2013 .

[19]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[20]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[21]  F. NOBILE,et al.  An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions , 2008, SIAM J. Sci. Comput..

[22]  Fabio Nobile,et al.  Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems , 2009 .