Metamagnetics with rainbow colors.

A family of coupled nanostrips with varying dimensions is demonstrated exhibiting optical magnetic responses across the whole visible spectrum, from red to blue. We refer to such a phenomenon as rainbow magnetism. The experimental and analytical studies of such structures provide us with a universal building block and a general recipe for producing controllable optical magnetism for various practical implementations.

[1]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[2]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[3]  Shuang Zhang,et al.  Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. , 2005, Physical review letters.

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  N I Zheludev,et al.  Planar electromagnetic metamaterial with a fish scale structure. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D. Smith,et al.  Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Yaroslav A. Urzhumov,et al.  Negative index meta-materials based on two-dimensional metallic structures , 2006 .

[8]  Jean-Michel Lourtioz,et al.  All-metamaterial-based subwavelength cavities (λ/60) for ultrathin directive antennas , 2006 .

[9]  Eleftherios N. Economou,et al.  Experimental demonstration of negative magnetic permeability in the far-infrared frequency regime , 2006 .

[10]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[11]  V. Podolskiy,et al.  PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS , 2002 .

[12]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[13]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[14]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[15]  F Schmidt,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.

[16]  R. Piestun,et al.  Total external reflection from metamaterials with ultralow refractive index , 2003 .

[17]  Yeshaiahu Fainman,et al.  Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites. , 2006, Optics express.

[18]  Uday K Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[19]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[20]  M. Wegener,et al.  Low-loss negative-index metamaterial at telecommunication wavelengths. , 2006, Optics letters.

[21]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[22]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[23]  Lei Zhang,et al.  Negative Index Materials Using Simple Short Wire Pairs , 2006 .

[24]  U. Chettiar,et al.  Negative refractive index in optics of metal-dielectric composites , 2005, physics/0510001.

[25]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[26]  M. Wegener,et al.  Single-slit split-ring resonators at optical frequencies: limits of size scaling. , 2006, Optics letters.

[27]  Pavel A. Belov,et al.  Subwavelength metallic waveguides loaded by uniaxial resonant scatterers. , 2005 .

[28]  G. Boreman,et al.  Modeling parameters for the spectral behavior of infrared frequency-selective surfaces. , 2001, Applied optics.

[29]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.