Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values
暂无分享,去创建一个
[1] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[2] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[3] J. Robbin,et al. Dynamical systems, shape theory and the Conley index , 1988, Ergodic Theory and Dynamical Systems.
[4] M. Mrozek. Leray functor and cohomological Conley index for discrete dynamical systems , 1990 .
[5] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[6] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[7] Andrzej Szymczak. The Conley index for decompositions of isolated invariant sets , 1995 .
[8] Herbert Edelsbrunner,et al. An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..
[9] A. Szymczak. A combinatorial procedure for finding isolating neighbourhoods and index pairs , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[10] M. Mrozek,et al. Homology Computation by Reduction of Chain Complexes , 1998 .
[11] Konstantin Mischaikow,et al. Chaos in the Lorenz equations: A computer assisted proof. Part II: Details , 1998, Math. Comput..
[12] Madjid Allili,et al. AN ALGORITHMIC APPROACH TO THE CONSTRUCTION OF HOMOMORPHISMS INDUCED BY MAPS IN HOMOLOGY , 1999 .
[13] W. Tucker. The Lorenz attractor exists , 1999 .
[14] R. Ho. Algebraic Topology , 2022 .