Robust portfolio modeling with incomplete cost information and project interdependencies

Robust portfolio modeling (RPM) [Liesio, J., Mild, P., Salo, A., 2007. Preference programming for robust portfolio modeling and project selection. European Journal of Operational Research 181, 1488-1505] supports project portfolio selection in the presence of multiple evaluation criteria and incomplete information. In this paper, we extend RPM to account for project interdependencies, incomplete cost information and variable budget levels. These extensions lead to a multi-objective zero-one linear programming problem with interval-valued objective function coefficients for which all non-dominated solutions are determined by a tailored algorithm. The extended RPM framework permits more comprehensive modeling of portfolio problems and provides support for advanced benefit-cost analyses. It retains the key features of RPM by providing robust project and portfolio recommendations and by identifying projects on which further attention should be focused. The extended framework is illustrated with an example on product release planning.

[1]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[2]  Bernardo Villarreal,et al.  Multicriteria integer programming: A (hybrid) dynamic programming recursive approach , 1981, Math. Program..

[3]  Ahti Salo,et al.  Preference programming for robust portfolio modeling and project selection , 2007, Eur. J. Oper. Res..

[4]  Timo Käkölä,et al.  Groupware Support for Requirements Management in New Product Development , 2005, J. Organ. Comput. Electron. Commer..

[5]  Totti Könnölä,et al.  Diversity in foresight: Insights from the fostering of innovation ideas , 2007 .

[6]  Raimo P. Hämäläinen,et al.  Preference Assessment by Imprecise Ratio Statements , 1992, Oper. Res..

[7]  Ahti Salo,et al.  Participatory development of a strategic product portfolio in a telecommunication company , 2008, Int. J. Technol. Manag..

[8]  D. N. Kleinmuntz Advances in Decision Analysis: Resource Allocation Decisions , 2007 .

[9]  Fereidoun Ghasemzadeh,et al.  An integrated framework for project portfolio selection , 1999 .

[10]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[11]  Raimo P. Hämäläinen,et al.  Decision Support by Interval SMART/SWING - Incorporating Imprecision in the SMART and SWING Methods , 2005, Decis. Sci..

[12]  William J. Tarantino,et al.  Use of Decision Analysis in the Army Base Realignment and Closure (BRAC) 2005 Military Value Analysis , 2006, Decis. Anal..

[13]  R. Cooper,et al.  New Product Portfolio Management : Practices and Performance , 1999 .

[14]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Kamal Golabi,et al.  Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory , 1981 .

[16]  Christian Stummer,et al.  Interactive R&D portfolio analysis with project interdependencies and time profiles of multiple objectives , 2003, IEEE Trans. Engineering Management.

[17]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  G. Kiziltan,et al.  An Algorithm for Multiobjective Zero-One Linear Programming , 1983 .

[19]  Günther Ruhe,et al.  The art and science of software release planning , 2005, IEEE Software.

[20]  Ahti Salo,et al.  Exploring Causal Relationships in an Innovation Program with Robust Portfolio Modeling , 2006 .

[21]  Ahti Salo,et al.  Rank inclusion in criteria hierarchies , 2005, Eur. J. Oper. Res..

[22]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.