The Boltzmann project
暂无分享,去创建一个
G Sutton | F Sparasci | G Machin | S. Benz | M. Moldover | J. Segovia | M. C. Martín | S. Briaudeau | L. Moretti | B. Darquié | B. Fellmuth | C. Gaiser | T. Zandt | A Castrillo | L Gianfrani | S P Benz | B Darquié | G. Sutton | L. Risegari | C. Daussy | X. J. Feng | C Daussy | S Briaudeau | A. Castrillo | L. Gianfrani | P. Steur | M. Plimmer | L Moretti | L Risegari | J. Qu | M R Moldover | J Fischer | B Fellmuth | C Gaiser | T Zandt | L Pitre | M D Plimmer | M de Podesta | R Underwood | R M Gavioso | D Madonna Ripa | P P M Steur | J Qu | X J Feng | J Zhang | D R White | E Moufarej | O Kozlova | J J Segovia | M C Martín | D Del Campo | G. Machin | D. del Campo | O. Kozlova | M. de Podesta | L. Pitre | R. Gavioso | J. Zhang | F. Sparasci | E. Moufarej | D. White | J. Fischer | D. Madonna Ripa | R. Underwood
[1] Samuel P. Benz,et al. Flat Frequency Response in the Electronic Measurement of Boltzmann's Constant , 2013, IEEE Transactions on Instrumentation and Measurement.
[2] John M. Martinis,et al. An AC Josephson source for Johnson noise thermometry , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.
[3] C. Gaiser,et al. A determination of the molar gas constant R by acoustic thermometry in helium , 2015 .
[4] Peter J. Mohr,et al. CODATA Recommended Values of the Fundamental Constants: 1998 , 2000 .
[5] Peter J. Mohr,et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI , 2018 .
[6] Weston L. Tew,et al. Electronic measurement of the Boltzmann constant with a quantum-voltage-calibrated Johnson noise thermometer , 2009 .
[7] K. Anhalt,et al. Thermodynamic temperature by primary radiometry , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] L. Gianfrani. Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[9] K. Gillis. Second-order boundary corrections to the radial acoustic eigenvalues for a spherical cavity , 2012 .
[10] A Amy-Klein,et al. Direct determination of the Boltzmann constant by an optical method. , 2007, Physical review letters.
[11] B. Taylor,et al. CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.
[12] Samuel P. Benz,et al. Johnson noise thermometry measurement of the Boltzmann constant with a 200 Ω sense resistor , 2012, 2012 Conference on Precision electromagnetic Measurements.
[13] Y. Duan,et al. Progress Toward Redetermining the Boltzmann Constant with a Fixed-Path-Length Cylindrical Resonator , 2011 .
[14] M. Moldover,et al. Test of a virtual cylindrical acoustic resonator for determining the Boltzmann constant , 2015 .
[15] Michael R. Moldover,et al. Designing quasi-spherical resonators for acoustic thermometry , 2004 .
[16] Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid , 2015 .
[17] L. Moretti,et al. Investigating the ultimate accuracy of Doppler-broadening thermometry by means of a global fitting procedure , 2015 .
[18] J. Johnson. Thermal Agitation of Electricity in Conductors , 1928 .
[19] Albert Einstein,et al. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005 .
[20] S. Briaudeau,et al. Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia , 2015, 1506.01828.
[21] M. Moldover,et al. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined , 2017, Metrologia.
[22] M. Himbert,et al. Measurement of the Boltzmann Constant kB Using a Quasi-Spherical Acoustic Resonator , 2011 .
[23] John M. Martinis,et al. A New Approach to Johnson Noise Thermometry using a Josephson Quantized Voltage Source , 2002 .
[24] D. Mark,et al. Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity , 2015 .
[25] D. Newell,et al. Correlations among acoustic measurements of the Boltzmann constant , 2015 .
[26] Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa , 2015 .
[27] H. Preston‐Thomas,et al. The International Temperature Scale of 1990 (ITS-90) , 1990 .
[28] G. Edwards,et al. The electromagnetic fields of a triaxial ellipsoid calculated by modal superposition , 2011 .
[29] E. May,et al. Characterization of the volume and shape of quasi-spherical resonators using coordinate measurement machines , 2010 .
[30] Bernd Fellmuth,et al. High-Precision Capacitance Bridge for Dielectric-Constant Gas Thermometry , 2011, IEEE Transactions on Instrumentation and Measurement.
[31] F. Stuart,et al. A low-uncertainty measurement of the Boltzmann constant , 2013 .
[32] G. Sutton,et al. Acoustic Resonator Experiments at the Triple Point of Water: First Results for the Boltzmann Constant and Remaining Challenges , 2010 .
[33] A low-uncertainty measurement of the Boltzmann constant , 2013 .
[34] T. Quinn,et al. An acoustic redetermination of the gas constant , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[35] John M. Martinis,et al. Johnson noise thermometry measurements using a quantized voltage noise source for calibration , 2003, IEEE Trans. Instrum. Meas..
[36] R. Hellmann,et al. Ab initio pair potential energy curve for the argon atom pair and thermophysical properties for the dilute argon gas. II. Thermophysical properties for low-density argon , 2008 .
[37] T. Odintsova,et al. Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm , 2016 .
[38] Samuel P. Benz,et al. Reduced non-linearities and improved temperature measurements for the NIST Johnson noise thermometer , 2009 .
[39] John L. Sarrao,et al. Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids , 1993 .
[40] M. Himbert,et al. Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water , 2015 .
[41] M. Triki,et al. Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy , 2010, 1012.4181.
[42] B. Taylor,et al. CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.
[43] Peter J. Mohr,et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005) , 2006 .
[44] James B. Mehl,et al. Acoustic resonance frequencies of deformed spherical resonators. II , 1982 .
[45] Samuel P. Benz,et al. A pulse‐driven programmable Josephson voltage standard , 1996 .
[46] M. Moldover,et al. Improved determination of the Boltzmann constant using a single, fixed-length cylindrical cavity , 2013 .
[47] James B. Mehl,et al. Spherical acoustic resonator: Effects of shell motion , 1985 .
[48] C. Chardonnet,et al. Absorption-line-shape recovery beyond the detection-bandwidth limit: Application to the precision spectroscopic measurement of the Boltzmann constant , 2014, 1406.2975.
[49] Barry N. Taylor,et al. The 1973 Least‐Squares Adjustment of the Fundamental Constants , 1973 .
[50] C. Daussy,et al. CO/sub 2/ laser stabilization to 0.1-Hz level using external electrooptic modulation , 1997 .
[51] A. Merlone,et al. A determination of the Boltzmann constant from speed of sound measurements in helium at a single thermodynamic state , 2010 .
[52] Davis,et al. Measurement of the universal gas constant R using a spherical acoustic resonator. , 1987, Physical review letters.
[53] E. Grüneisen. Zusammenhang zwischen Kompressibilität, thermischer Ausdehnung, Atomvolumen und Atomwärme der Metalle , 1908 .
[54] J. Segovia,et al. Updated determination of the molar gas constant R by acoustic measurements in argon at UVa-CEM , 2017 .
[55] Barry N. Taylor,et al. THE 1986 ADJUSTMENT OF THE FUNDAMENTAL PHYSICAL CONSTANTS: A REPORT OF THE CODATA TASK GROUP ON FUNDAMENTAL CONSTANTS , 1987 .
[56] Speed-dependent effects in NH 3 self-broadened spectra: Towards the determination of the Boltzmann constant , 2012, 1201.4087.
[57] H. Callen,et al. Irreversibility and Generalized Noise , 1951 .
[58] Rod White,et al. An improved electronic determination of the Boltzmann constant by Johnson noise thermometry , 2017, Metrologia.
[59] P. Laporta,et al. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant. , 2008, Physical review letters.
[60] Rod White,et al. Improved electronic measurement of the Boltzmann constant by Johnson noise Thermometry , 2014 .
[61] M. Moldover,et al. Improving acoustic determinations of the Boltzmann constant with mass spectrometer measurements of the molar mass of argon , 2015 .
[62] P. Laporta,et al. Determination of the Boltzmann constant by means of precision measurements of H2(18)O line shapes at 1.39 μm. , 2013, Physical review letters.
[63] K. Szalewicz,et al. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium. , 2012, The Journal of chemical physics.
[64] C. Bord,et al. Atomic clocks and inertial sensors , 2002 .
[65] P. Morantz,et al. Pyknometric volume measurement of a quasispherical resonator , 2012 .
[66] N. Kaneko,et al. Measurement of the Boltzmann constant by Johnson noise thermometry using a superconducting integrated circuit , 2017 .
[67] Joachim Fischer,et al. Determination of the Boltzmann constant—status and prospects , 2006 .
[68] M de Podesta,et al. Acoustic gas thermometry , 2014 .
[69] M. Moldover,et al. New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas , 2017 .
[70] Krzysztof Szalewicz,et al. Frequency-dependent polarizability of helium including relativistic effects with nuclear recoil terms. , 2015, Physical review letters.
[71] Mehl,et al. Measurement of the ratio of the speed of sound to the speed of light. , 1986, Physical review. A, General physics.
[72] Paul Morantz,et al. Dimensional characterization of a quasispherical resonator by microwave and coordinate measurement techniques , 2011 .
[73] S. Picard,et al. The kelvin redefinition and its mise en pratique , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[74] S. P. Benz,et al. Constraints on a synthetic-noise source for Johnson noise thermometry , 2008 .
[75] A. Merlone,et al. Capabilities for Dielectric-Constant Gas Thermometry in a Special Large-Volume Liquid-Bath Thermostat , 2011 .
[76] Weston L. Tew,et al. Measurement time and statistics for a noise thermometer with a synthetic-noise reference , 2008 .
[77] L. Moretti,et al. The Boltzmann constant from the shape of a molecular spectral line , 2014 .
[78] J. Mehl. Acoustic Eigenvalues of a Quasispherical Resonator: Second Order Shape Perturbation Theory for Arbitrary Modes , 2007, Journal of research of the National Institute of Standards and Technology.
[79] Weston L. Tew,et al. An electronic measurement of the Boltzmann constant , 2011 .
[80] M. Triki,et al. A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia , 2013, 1309.4549.
[81] Bernd Fellmuth,et al. Dielectric-constant gas thermometry , 2015 .
[82] B. Fellmuth,et al. Low-temperature determination of the Boltzmann constant by dielectric-constant gas thermometry , 2012 .
[83] H. Nyquist. Thermal Agitation of Electric Charge in Conductors , 1928 .
[84] K. Gillis,et al. Characterization of Piezoelectric Ceramic Transducer for Accurate Speed-of-Sound Measurement , 2010 .
[85] D. White,et al. Frequency-response mismatch effects in Johnson noise thermometry , 2018 .
[86] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[87] A. Merlone,et al. The Boltzmann constant from the H2 18O vibration–rotation spectrum: complementary tests and revised uncertainty budget , 2015 .
[88] J.X. Przybysz,et al. Pulse-driven Josephson digital/analog converter [voltage standard] , 1998, IEEE Transactions on Applied Superconductivity.
[89] Wladimir Sabuga,et al. Determination of the Boltzmann constant by dielectric-constant gas thermometry , 2013 .
[90] Christian Chardonnet,et al. A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy , 2014, 1404.1162.
[91] Samuel P. Benz,et al. Reduced Nonlinearity Effect on the Electronic Measurement of the Boltzmann Constant , 2011, IEEE Transactions on Instrumentation and Measurement.
[92] D. Mark,et al. Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant , 2017 .
[93] K. Coakley,et al. Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry , 2016, Metrologia.
[94] M. Himbert,et al. An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM , 2009 .
[95] W L Tew,et al. A Boltzmann constant determination based on Johnson noise thermometry , 2017, Metrologia.
[96] Aziz,et al. Ab initio calculations for helium: A standard for transport property measurements. , 1995, Physical review letters.
[97] Determination of the Boltzmann Constant by Laser Spectroscopy as a Basis for Future Measurements of the Thermodynamic Temperature , 2009, 0911.2507.
[98] F. Bertiglia,et al. Dual-laser absorption spectroscopy of C2H2 at 1.4 μm , 2016 .
[99] B. Fellmuth,et al. Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry , 2015 .
[100] A Actis,et al. The status of Johnson noise thermometry , 1996 .
[101] B. Fellmuth,et al. Dielectric-Constant Gas-Thermometry Measuring System for the Determination of the Boltzmann Constant at PTB , 2010 .