Methods for automatically analyzing humpback song units.

This paper presents mathematical techniques for automatically extracting and analyzing bioacoustic signals. Automatic techniques are described for isolation of target signals from background noise, extraction of features from target signals and unsupervised classification (clustering) of the target signals based on these features. The only user-provided inputs, other than raw sound, is an initial set of signal processing and control parameters. Of particular note is that the number of signal categories is determined automatically. The techniques, applied to hydrophone recordings of humpback whales (Megaptera novaeangliae), produce promising initial results, suggesting that they may be of use in automated analysis of not only humpbacks, but possibly also in other bioacoustic settings where automated analysis is desirable.

[1]  S.E. Levinson,et al.  Structural methods in automatic speech recognition , 1985, Proceedings of the IEEE.

[2]  J R Potter,et al.  Marine mammal call discrimination using artificial neural networks. , 1994, The Journal of the Acoustical Society of America.

[3]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[4]  R. Payne,et al.  Songs of Humpback Whales , 1971, Science.

[5]  Denis Chabot,et al.  A Quantitative Technique to Compare and Classify Humpback Whale (Megaptera novaeangliae) Sounds , 2010 .

[6]  S. K. Das,et al.  Issues in Practical Large Vocabulary Isolated Word Recognition: The IBM Tangora System , 1996 .

[7]  Biing-Hwang Juang,et al.  An Overview of Automatic Speech Recognition , 1996 .

[8]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[9]  Pedro M. Domingos The Role of Occam's Razor in Knowledge Discovery , 1999, Data Mining and Knowledge Discovery.

[10]  P L Tyack,et al.  A quantitative measure of similarity for tursiops truncatus signature whistles. , 1993, The Journal of the Acoustical Society of America.

[11]  H. E. Winn,et al.  The song of the humpback whale Megaptera novaeangliae in the West Indies , 1978 .

[12]  Thomas W. Parks,et al.  Isolating biological acoustic transient signals , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  P. O. Thompson,et al.  Sounds, source levels, and associated behavior of humpback whales, southeast Alaska. , 1986, The Journal of the Acoustical Society of America.

[14]  J. Makhoul,et al.  Vector quantization in speech coding , 1985, Proceedings of the IEEE.

[15]  Kim Miller,et al.  Classification of wolf call types using remote sensor technology , 2007 .

[16]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[17]  Robert D. McCauley,et al.  Geograpmc Variation in South Pacific Humpback Whale Songs , 1998 .

[18]  L. R. Rabiner,et al.  On the application of vector quantization and hidden Markov models to speaker-independent, isolated word recognition , 1983, The Bell System Technical Journal.

[19]  David R. Bickel,et al.  Robust Estimators of the Mode and Skewness of Continuous Data , 2002 .

[20]  Andrew Taylor Bird flight call discrimination using machine learning , 1995 .

[21]  H. E. Winn,et al.  Signature information in the song of the humpback whale , 1979 .

[22]  J A Kogan,et al.  Automated recognition of bird song elements from continuous recordings using dynamic time warping and hidden Markov models: a comparative study. , 1998, The Journal of the Acoustical Society of America.

[23]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[24]  B.-H. Juang,et al.  On the hidden Markov model and dynamic time warping for speech recognition — A unified view , 1984, AT&T Bell Laboratories Technical Journal.

[25]  Volker B Deecke,et al.  Automated categorization of bioacoustic signals: avoiding perceptual pitfalls. , 2005, The Journal of the Acoustical Society of America.

[26]  Lawrence R. Rabiner,et al.  An algorithm for determining the endpoints of isolated utterances , 1975, Bell Syst. Tech. J..

[27]  S. Furui,et al.  Cepstral analysis technique for automatic speaker verification , 1981 .

[28]  Michael T. Johnson,et al.  Automatic classification and speaker identification of African elephant (Loxodonta africana) vocalizations. , 2003 .

[29]  E. Mercado,et al.  A sonar model for humpback whale song , 2000, IEEE Journal of Oceanic Engineering.

[30]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[31]  U. Grenander Some Direct Estimates of the Mode , 1965 .

[32]  David K. Burton,et al.  Text-dependent speaker verification using vector quantization source coding , 1985, IEEE Trans. Acoust. Speech Signal Process..

[33]  Ryuji Suzuki,et al.  Information entropy of humpback whale songs. , 1999, The Journal of the Acoustical Society of America.

[34]  Sadaoki Furui,et al.  Speaker-independent isolated word recognition using dynamic features of speech spectrum , 1986, IEEE Trans. Acoust. Speech Signal Process..

[35]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[36]  Eduardo Mercado,et al.  Classification of humpback whale vocalizations using a self-organizing neural network , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[37]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.