Orthogonal hypercubes and related designs
暂无分享,去创建一个
[1] Tayuan Huang,et al. (s, R; Mu)-nets and Alternating Forms Graphs , 1993, Discret. Math..
[2] Charles Laywine. Subsquares in orthogonal latin squares as subspaces in affine geometries: A generalization of an equivalence of bose , 1993, Des. Codes Cryptogr..
[3] Harald Niederreiter,et al. Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..
[4] Walter T. Federer,et al. On the Construction of Mutually Orthogonal F-Hyperrectangles , 1980 .
[5] G. Mullen,et al. D-Dimensional hypercubes and the Euler and MacNeish conjectures , 1995 .
[6] Stephan J. Suchower. Nonisomorphic complete sets of F-rectangles with prime power dimensions , 1995, Des. Codes Cryptogr..
[7] A. Hedayat,et al. Further Contributions to the Theory of F-Squares Design , 1975 .
[8] Gary L. Mullen,et al. Latin cubes of order >=5 , 1980, Discret. Math..
[9] Ilene H. Morgan. Construction of complete sets of mutually equiorthogonal frequency hypercubes , 1998, Discret. Math..
[10] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[11] V. C. Mavron. On the structure of affine designs , 1972 .
[12] H. Niederreiter,et al. Tables of ( T, M, S )-Net and ( T, 5 )-Sequence Parameters , 1995 .
[13] Gary L. Mullen,et al. Finite Fields: Theory, Applications and Algorithms , 1994 .
[14] Gary L. Mullen,et al. LATIN CUBES AND HYPERCUBES OF PRIME ORDER , 1985 .
[15] G. Mullen. A candidate for the “next fermat problem” , 1995 .
[16] J. Dénes,et al. Latin squares and their applications , 1974 .
[17] Gary L. Mullen,et al. Generalizations of Bose's Equivalence between Complete Sets of Mutually Orthogonal Latin Squares and Affine Planes , 1992, J. Comb. Theory, Ser. A.
[18] J. Dénes,et al. Chapter 9 - Latin Squares and Codes , 1991 .
[19] Gary L. Mullen. Polynomial representation of complete sets of mutually orthogonal frequency squares of prime power order , 1988, Discret. Math..
[20] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[21] Ronald C. Read,et al. Graph theory and computing , 1972 .
[22] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[23] Geoff Whittle,et al. Point sets with uniformity properties and orthogonal hypercubes , 1992 .
[24] G. Mullen. Combinatorial methods in the construction of point sets with uniformity properties , 1996 .
[25] Gary L. Mullen,et al. A study of frequency cubes , 1988, Discret. Math..
[26] A. Hedayat,et al. F-square and Orthogonal F-square Designs. A Generalization of Latin Squares and Orthogonal Latin Square Designs , 1970 .
[27] Ilene H. Morgan. Equiorthogonal Frequency Hypercubes: Preliminary Theory , 1998, Des. Codes Cryptogr..
[28] Gary L. Mullen,et al. An Equivalence between (T, M, S)-Nets and Strongly Orthogonal Hypercubes , 1996, J. Comb. Theory, Ser. A.
[29] S. S. Shrikhande,et al. Affine resolvable balanced incomplete block designs: A survey , 1976 .
[30] Ching-Shui Cheng,et al. Optimal Designs for the Elimination of Multi-Way Heterogeneity , 1978 .
[31] Stephan J. Suchower. Polynomial Representations of Complete Sets of Frequency Hyperrectangles with Prime Power Dimensions , 1993, J. Comb. Theory, Ser. A.
[32] Walter T. Federer,et al. Orthogonal F-rectangles, orthogonal arrays, and codes , 1986, J. Comb. Theory, Ser. A.
[33] Ching-Shui Cheng,et al. Orthogonal Arrays with Variable Numbers of Symbols , 1980 .