Orthogonal hypercubes and related designs

We provide a brief survey of activity related to higher-dimensional hypercubes, with the main focus on sets of mutually orthogonal hypercubes and related designs. We also discuss a number of open problems and conjectures.

[1]  Tayuan Huang,et al.  (s, R; Mu)-nets and Alternating Forms Graphs , 1993, Discret. Math..

[2]  Charles Laywine Subsquares in orthogonal latin squares as subspaces in affine geometries: A generalization of an equivalence of bose , 1993, Des. Codes Cryptogr..

[3]  Harald Niederreiter,et al.  Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes , 1992, Discret. Math..

[4]  Walter T. Federer,et al.  On the Construction of Mutually Orthogonal F-Hyperrectangles , 1980 .

[5]  G. Mullen,et al.  D-Dimensional hypercubes and the Euler and MacNeish conjectures , 1995 .

[6]  Stephan J. Suchower Nonisomorphic complete sets of F-rectangles with prime power dimensions , 1995, Des. Codes Cryptogr..

[7]  A. Hedayat,et al.  Further Contributions to the Theory of F-Squares Design , 1975 .

[8]  Gary L. Mullen,et al.  Latin cubes of order >=5 , 1980, Discret. Math..

[9]  Ilene H. Morgan Construction of complete sets of mutually equiorthogonal frequency hypercubes , 1998, Discret. Math..

[10]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[11]  V. C. Mavron On the structure of affine designs , 1972 .

[12]  H. Niederreiter,et al.  Tables of ( T, M, S )-Net and ( T, 5 )-Sequence Parameters , 1995 .

[13]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[14]  Gary L. Mullen,et al.  LATIN CUBES AND HYPERCUBES OF PRIME ORDER , 1985 .

[15]  G. Mullen A candidate for the “next fermat problem” , 1995 .

[16]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[17]  Gary L. Mullen,et al.  Generalizations of Bose's Equivalence between Complete Sets of Mutually Orthogonal Latin Squares and Affine Planes , 1992, J. Comb. Theory, Ser. A.

[18]  J. Dénes,et al.  Chapter 9 - Latin Squares and Codes , 1991 .

[19]  Gary L. Mullen Polynomial representation of complete sets of mutually orthogonal frequency squares of prime power order , 1988, Discret. Math..

[20]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[21]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[22]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[23]  Geoff Whittle,et al.  Point sets with uniformity properties and orthogonal hypercubes , 1992 .

[24]  G. Mullen Combinatorial methods in the construction of point sets with uniformity properties , 1996 .

[25]  Gary L. Mullen,et al.  A study of frequency cubes , 1988, Discret. Math..

[26]  A. Hedayat,et al.  F-square and Orthogonal F-square Designs. A Generalization of Latin Squares and Orthogonal Latin Square Designs , 1970 .

[27]  Ilene H. Morgan Equiorthogonal Frequency Hypercubes: Preliminary Theory , 1998, Des. Codes Cryptogr..

[28]  Gary L. Mullen,et al.  An Equivalence between (T, M, S)-Nets and Strongly Orthogonal Hypercubes , 1996, J. Comb. Theory, Ser. A.

[29]  S. S. Shrikhande,et al.  Affine resolvable balanced incomplete block designs: A survey , 1976 .

[30]  Ching-Shui Cheng,et al.  Optimal Designs for the Elimination of Multi-Way Heterogeneity , 1978 .

[31]  Stephan J. Suchower Polynomial Representations of Complete Sets of Frequency Hyperrectangles with Prime Power Dimensions , 1993, J. Comb. Theory, Ser. A.

[32]  Walter T. Federer,et al.  Orthogonal F-rectangles, orthogonal arrays, and codes , 1986, J. Comb. Theory, Ser. A.

[33]  Ching-Shui Cheng,et al.  Orthogonal Arrays with Variable Numbers of Symbols , 1980 .