Volume 1 No . 2 2008 CR-INVARIANTS AND THE SCATTERING OPERATOR FOR COMPLEX MANIFOLDS WITH BOUNDARY

[1]  B. Ørsted,et al.  What is Q-Curvature? , 2008 .

[2]  P. Perry,et al.  CR-Invariants and the Scattering Operator for Complex Manifolds with Boundary , 2007, 0709.1103.

[3]  Antonio S'a Barreto,et al.  Scattering and inverse scattering on ACH manifolds , 2006, math/0605538.

[4]  A. Vasy,et al.  Absence of super-exponentially decaying eigenfunctions on Riemannian manifolds with pinched negative curvature , 2004, math/0411001.

[5]  C. Fefferman,et al.  Ambient metric construction of Q-curvature in conformal and CR geometries , 2003, math/0303184.

[6]  A. Gover,et al.  CR invariant powers of the sub-Laplacian , 2003, math/0301092.

[7]  C. Fefferman,et al.  $Q$-Curvature and Poincaré Metrics , 2001, math/0110271.

[8]  M. Zworski,et al.  Scattering matrix in conformal geometry , 2001, math/0109089.

[9]  L. Mason,et al.  Conformally Invariant Powers of the Laplacian, I: Existence , 1992 .

[10]  C. Epstein,et al.  Resolvent of the Laplacian on strictly pseudoconvex domains , 1991 .

[11]  C. Epstein,et al.  Characteristic numbers of bounded domains , 1990 .

[12]  John M. Lee,et al.  Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains , 1988 .

[13]  John M. Lee PSEUDO-EINSTEIN STRUCTURES ON CR MANIFOLDS , 1988 .

[14]  R. Melrose,et al.  Boundary behavior of the complex Monge-Ampère equation , 1982 .

[15]  H. Lawson,et al.  On boundaries of complex analytic varieties, II , 1975 .

[16]  Hugo Rossi,et al.  On the Extension of Holomorphic Functions from the Boundary of a Complex Manifold , 1965 .

[17]  R. Melrose SCATTERING THEORY FOR STRICTLY PSEUDOCONVEX DOMAINS , 1996 .