A characterization of the arithmetical hierarchy by language equations

Language equations with all Boolean operations and concatenation and a particular order on the set of solutions are proved to be equal in expressive power to the first-order Peano arithmetic. In particular, it is shown that the class of sets representable using k variables (for every k ≥ 2) is exactly the k-th level of the arithmetical hierarchy, i.e., the sets definable by recursive predicates with k alternating quantifiers. The property of having an extremal solution is shown to be nonrepresentable in first-order arithmetic.

[1]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[2]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[3]  Jozef Gruska,et al.  Some Classifications of Context-Free Languages , 1969, Inf. Control..

[4]  Alexander Okhotin Decision Problems for Language Equations with Boolean Operations , 2003, ICALP.

[5]  Juris Hartmanis Context-free languages and turing machine computations , 1967 .

[6]  Oscar H. Ibarra,et al.  Characterizations and Computational Complexity of Systolic Trellis Automata , 1984, Theor. Comput. Sci..

[7]  Neil Immerman,et al.  Number of variables is equivalent to space , 2001, Journal of Symbolic Logic.

[8]  Seymour Ginsburg,et al.  Two Families of Languages Related to ALGOL , 1962, JACM.

[9]  Alexander Okhotin On Computational Universality in Language Equations , 2004, MCU.

[10]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[11]  Neil Immerman DSPACE[n k ] = VAR[k+1]. , 1991 .

[12]  J. Conway Regular algebra and finite machines , 1971 .

[13]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[14]  Jozef Gruska On a classification of context-free languages , 1967, Kybernetika.

[15]  Alexander Okhotin Conjunctive Grammars and Systems of Language Equations , 2004, Programming and Computer Software.

[16]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[17]  Alexander Okhotin,et al.  Boolean Grammars , 2003, Developments in Language Theory.

[18]  William C. Rounds,et al.  LFP A Logic for Linguistic Descriptions and an Analysis of its Complexity , 1988, Comput. Linguistics.

[19]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[20]  Robert McNaughton,et al.  The theory of automata , 1961 .

[21]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[22]  Alexander Okhotin,et al.  On the number of nonterminals in linear conjunctive grammars , 2004, Theor. Comput. Sci..