Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory

Alternating minimization heuristics seek to solve a (difficult) global optimization task through iteratively solving a sequence of (much easier) local optimization tasks on different parts (or blocks) of the input parameters. While popular and widely applicable, very few examples of this heuristic are rigorously shown to converge to optimality, and even fewer to do so efficiently. In this paper we present a general framework which is amenable to rigorous analysis, and expose its applicability. Its main feature is that the local optimization domains are each a group of invertible matrices, together naturally acting on tensors, and the optimization problem is minimizing the norm of an input tensor under this joint action. The solution of this optimization problem captures a basic problem in Invariant Theory, called the null-cone problem. This algebraic framework turns out to encompass natural computational problems in combinatorial optimization, algebra, analysis, quantum information theory, and geometric complexity theory. It includes and extends to high dimensions the recent advances on (2-dimensional) operator scaling. Our main result is a fully polynomial time approximation scheme for this general problem, which may be viewed as a multi-dimensional scaling algorithm. This directly leads to progress on some of the problems in the areas above, and a unified view of others. We explain how faster convergence of an algorithm for the same problem will allow resolving central open problems. Our main techniques come from Invariant Theory, and include its rich non-commutative duality theory, and new bounds on the bitsizes of coefficients of invariant polynomials. They enrich the algorithmic toolbox of this very computational field of mathematics, and are directly related to some challenges in geometric complexity theory (GCT).

[1]  E. Lieb Gaussian kernels have only Gaussian maximizers , 1990 .

[2]  Jesús A. De Loera,et al.  On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..

[3]  Michael Walter,et al.  Multipartite Quantum States and their Marginals , 2014, 1410.6820.

[4]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[5]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[6]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[7]  Peter Bürgisser,et al.  Explicit lower bounds via geometric complexity theory , 2012, STOC '13.

[8]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[9]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[10]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[11]  Avi Wigderson,et al.  A Deterministic Polynomial Time Algorithm for Non-commutative Rational Identity Testing , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[12]  H. Kuk On equilibrium points in bimatrix games , 1996 .

[13]  Joel W. Robbin,et al.  The Moment-Weight Inequality and the Hilbert–Mumford Criterion , 2013, Lecture Notes in Mathematics.

[14]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[15]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[16]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[17]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[18]  C. Woodward,et al.  Moment maps and geometric invariant theory , 2009, 0912.1132.

[19]  B. Sury An elementary proof of the Hilbert-Mumford criterion. , 2000 .

[20]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[21]  Bernd Sturmfels,et al.  Algorithms in Invariant Theory (Texts and Monographs in Symbolic Computation) , 2008 .

[22]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[23]  Velleda Baldoni,et al.  Computation of dilated Kronecker coefficients , 2018, J. Symb. Comput..

[24]  Ryan Kennedy Low-Rank Matrix Completion , 2013 .

[25]  Aram W. Harrow,et al.  The Mathematics of Entanglement , 2016, 1604.01790.

[26]  Terence Tao,et al.  Puzzles and (equivariant) cohomology of Grassmannians , 2001, math/0112150.

[27]  P. Newstead Moduli Spaces and Vector Bundles: Geometric Invariant Theory , 2009 .

[28]  Avi Wigderson,et al.  Algorithmic aspects of Brascamp-Lieb inequalities , 2016, ArXiv.

[29]  Joshua A. Grochow,et al.  On cap sets and the group-theoretic approach to matrix multiplication , 2016, ArXiv.

[30]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[31]  Avi Wigderson,et al.  Operator Scaling: Theory and Applications , 2015, Found. Comput. Math..

[32]  R. Phillips,et al.  Linear Transformations , 1940, Essential Mathematics for Engineers and Scientists.

[33]  P. Hayden,et al.  Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.

[34]  D. Hilbert Ueber die Theorie der algebraischen Formen , 1890 .

[35]  M. Raamsdonk,et al.  Existence of Locally Maximally Entangled Quantum States via Geometric Invariant Theory , 2017, Annales Henri Poincaré.

[36]  Carlo Tomasi,et al.  ON LINEAR TRANSFORMATIONS , 2010 .

[37]  Suvrit Sra,et al.  First-order Methods for Geodesically Convex Optimization , 2016, COLT.

[38]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[39]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.

[40]  Peter Bürgisser,et al.  Geometric complexity theory and tensor rank , 2010, STOC '11.

[41]  Wotao Yin,et al.  A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..

[42]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[43]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[44]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[45]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[46]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[47]  Michael Walter,et al.  Inequalities for Moment Cones of Finite-Dimensional Representations , 2014, 1410.8144.

[48]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[49]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[50]  Youming Qiao,et al.  Constructive noncommutative rank computation in deterministic polynomial time over fields of arbitrary characteristics , 2015, ArXiv.

[51]  L. Gurvits,et al.  The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .

[52]  Peter Bürgisser,et al.  Deciding Positivity of Littlewood-Richardson Coefficients , 2012, SIAM J. Discret. Math..

[53]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[54]  E. Lieb,et al.  Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .

[55]  K. Mulmuley,et al.  Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient , 2012 .

[56]  Michael Walter,et al.  Membership in Moment Polytopes is in NP and coNP , 2015, SIAM J. Comput..

[57]  Michael Walter,et al.  On vanishing of Kronecker coefficients , 2015, computational complexity.

[58]  A. Klyachko Quantum marginal problem and N-representability , 2005, quant-ph/0511102.

[59]  Nicolas Ressayre,et al.  Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.

[60]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[61]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[62]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[63]  Alexander Klyachko Coherent states, entanglement, and geometric invariant theory , 2002 .

[64]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[66]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[67]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[68]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Efficient algorithms for Noether Normalization , 2012 .