Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media

A general constitutive framework is proposed to incorporate linear and nonlinear mechanical behaviour laws into a standard phase field model. In the diffuse interface region where both phases coexist, two mixture rules for strain and stress are introduced, which are based on the Voigt/Taylor and Reuss/Sachs well-known homogenization schemes and compared to the commonly used mixture rules in phase field models. Finite element calculations have been performed considering an elastoplastic precipitate growing in an elastic matrix in order to investigate the plastic accommodation processes.

[1]  I. Steinbach,et al.  Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. Finel,et al.  Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys , 2010 .

[3]  Akira Onuki,et al.  Ginzburg-Landau Approach to Elastic Effects in the Phase Separation of Solids , 1989 .

[4]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[5]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[7]  R. Quey,et al.  Numerical modelling of the plasticity induced during diffusive transformation. An ensemble averaging approach for the case of random arrays of nuclei , 2008 .

[8]  Toshio Suzuki,et al.  Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys , 1998 .

[9]  Markus Apel,et al.  Multi phase field model for solid state transformation with elastic strain , 2006 .

[10]  P. M. Naghdi,et al.  On continuum thermodynamics , 1972 .

[11]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[12]  Ahmed Benallal,et al.  An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations , 1988 .

[13]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[14]  J. Cahn,et al.  A simple model for coherent equilibrium , 1984 .

[15]  Yunzhi Wang,et al.  Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap , 1993 .

[16]  Benoît Appolaire,et al.  Non-coherent interfaces in diffuse interface models , 2010 .

[17]  S. Shi,et al.  An elastoplastic phase-field model for the evolution of hydride precipitation in zirconium. Part I: Smooth specimen , 2008 .

[18]  S. Sjöström,et al.  Martensitic transformation plasticity simulations by finite elements , 1994 .

[19]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[20]  Toshio Mura,et al.  The Elastic Field Outside an Ellipsoidal Inclusion , 1977 .

[21]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[22]  R. Williams The calculation of coherent phase equilibria , 1984 .

[23]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[24]  N. Ohno,et al.  Elasto-plastic simulation of stress evolution during grain growth using a phase field model , 2007 .

[25]  S. Shi,et al.  Elastoplastic phase field model for microstructure evolution , 2005 .

[26]  Annick Loiseau,et al.  Origin of chessboard-like structures in decomposing alloys. Theoretical model and computer simulation , 1998 .

[27]  Toshio Suzuki,et al.  Phase-field model for binary alloys. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Markus Apel,et al.  The influence of lattice strain on pearlite formation in Fe–C , 2007 .

[29]  Dominique Jeulin,et al.  Mechanics of Random and Multiscale Microstructures , 2001, International Centre for Mechanical Sciences.

[30]  D. Rodney,et al.  Phase eld methods and dislocations , 2001 .

[31]  Frédéric Feyel,et al.  Finite element formulation of a phase field model based on the concept of generalized stresses , 2009 .

[32]  Benoît Appolaire,et al.  Modelling of Phase Transformations in Titanium Alloys with a Phase-field Model , 2003 .

[33]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[34]  Yunzhi Wang,et al.  Contributions from elastic inhomogeneity and from plasticity to γ' rafting in single-crystal Ni-Al , 2008 .

[35]  M. Geers,et al.  Phase field dependent viscoplastic behaviour of solder alloys , 2005 .

[36]  T. Takaki,et al.  Elastoplastic phase-field simulation of self- and plastic accommodations in Cubic→tetragonalCubic→tetragonal martensitic transformation , 2008 .

[37]  G. Boussinot,et al.  Phase-field modeling of bimodal microstructures in nickel-based superalloys , 2009 .

[38]  G. Cailletaud,et al.  Formulation éléments finis des modèles de champ de phases basée sur la théorie de l'équilibre des microforces , 2009 .

[39]  Gérard A. Maugin,et al.  THERMODYNAMICS WITH INTERNAL VARIABLES , 1999 .

[40]  Mgd Marc Geers,et al.  A nonlocal diffuse interface model for microstructure evolution of tin–lead solder , 2004 .

[41]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[42]  Markus Apel,et al.  The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study , 2006 .