Fine-structure diagnostics of neutral carbon toward HE 0515-4414

New high-resolution high signal-to-noise spectra of the $z=1.15$ damped Lyman α (DLA) system toward the quasi-stellar object HE 0515-4414 reveal absorption lines of the multiplets 2 and 3 in $\ion{C}{i}$. The resonance lines are seen in two components with total column densities of $\log N=13.79\pm0.01$ and $\log N=13.36\pm0.01$, respectively. The comparision of theoretical calculations of the relative fine-structure population with the ratios of the observed column densities suggests that the $\ion{C}{i}$ absorbing medium is either very dense or exposed to very intense UV radiation. The upper limit on the local UV energy density is 100 times the galactic UV energy density, while the upper limit on the $\ion{H}{i}$ number density is 110 cm -3 . The excitation temperatures of the ground state fine-structure levels of $T=15.7$ and $T=11.1$ K, respectively, are consistent with the temperature-redshift relation predicted by the standard Friedmann cosmology. The cosmic microwave background radiation (CMBR) is only a minor source of the observed fine-structure excitation.

[1]  J. Ge,et al.  A New Measurement of the Cosmic Microwave Background Radiation Temperature at z = 1.97* , 1996, astro-ph/9607145.

[2]  C. Hogan,et al.  Deuterium abundance and background radiation temperature in high-redshift primordial clouds , 1994, Nature.

[3]  P. Petitjean,et al.  The microwave background temperature at the redshift of 2.33771 , 2000 .

[4]  Richard A. Wolf,et al.  Fine-Structure Transitions , 1968 .

[5]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[6]  P. Petitjean,et al.  The cosmic microwave background radiation temperature at a redshift of 2.34 , 2000, Nature.

[7]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[8]  Edward B. Jenkins,et al.  The Distribution of Thermal Pressures in the Interstellar Medium , 2001 .

[9]  E. Jenkins A Procedure for Correcting the Apparent Optical Depths of Moderately Saturated Interstellar Absorption Lines , 1996, astro-ph/9605010.

[10]  U. S. Paulo,et al.  PopRatio: A program to calculate atomic level populations in astrophysical plasmas , 2000, astro-ph/0010533.

[11]  A. I. Silva,et al.  Physical conditions in quasi-stellar object absorbers from fine-structure absorption lines , 2000, astro-ph/0012323.

[12]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[13]  J. Ge,et al.  H2, C I, Metallicity, and Dust Depletion in the z = 2.34 Damped Lyα Absorption System toward QSO 1232+0815 , 2001 .

[14]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[15]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.