Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water

[1]  Guoning Liu,et al.  Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions , 2014 .

[2]  Heng Liang,et al.  Removal of antimony (III) from polluted surface water using a hybrid coagulation–flocculation–ultrafiltration (CF–UF) process , 2014 .

[3]  Duu-Jong Lee,et al.  Fungi aerobic granules and use of Fe(III)-treated granules for biosorption of antimony(V) , 2014 .

[4]  Q. Wei,et al.  Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. , 2014, Journal of hazardous materials.

[5]  Jing Zhang,et al.  Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. , 2014, Journal of hazardous materials.

[6]  Y. Ok,et al.  Antimonate and antimonite adsorption by a polyvinyl alcohol-stabilized granular adsorbent containing nanoscale zero-valent iron , 2014 .

[7]  L. Lv,et al.  Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger. , 2014, Journal of environmental sciences.

[8]  D. Mohan,et al.  Arsenate adsorption on three types of granular schwertmannite. , 2013, Water research.

[9]  G. Zeng,et al.  Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite , 2013 .

[10]  Xubiao Luo,et al.  Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As(III) and As(V) from water , 2013 .

[11]  Weilin Guo,et al.  Removal of antimony(III) from aqueous solution by graphene as an adsorbent , 2012 .

[12]  Xiaomin Dou,et al.  Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. , 2012, Journal of environmental sciences.

[13]  Xubiao Luo,et al.  Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites , 2012 .

[14]  Fengchang Wu,et al.  Antimony pollution in China. , 2012, The Science of the total environment.

[15]  M. He,et al.  Adsorption of antimony(III) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition , 2011 .

[16]  Shifeng Hou,et al.  Formation of highly stable dispersions of silane-functionalized reduced graphene oxide , 2010 .

[17]  S. Ramaprabhu,et al.  Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide , 2010 .

[18]  W. Lu,et al.  Improved synthesis of graphene oxide. , 2010, ACS nano.

[19]  M. Tighe,et al.  The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. , 2010, Environmental pollution.

[20]  S. Pergantis,et al.  Elevated antimony concentrations in commercial juices. , 2010, Journal of environmental monitoring : JEM.

[21]  M. He,et al.  Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid , 2010 .

[22]  J. Zachara,et al.  FTIR spectral components of schwertmannite. , 2010, Environmental science & technology.

[23]  R. Frost,et al.  Raman spectroscopic study of the antimonate mineral brandholzite Mg[Sb2(OH)12]·6H2O , 2009 .

[24]  R. Frost,et al.  Raman spectroscopic study of the uranyl sulphate mineral jáchymovite (UO2)8(SO4)(OH)14· 13H2O , 2009 .

[25]  M. He,et al.  Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). , 2009, Water research.

[26]  Patrizia Santi,et al.  Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. , 2009, Toxicology.

[27]  M I Katsnelson,et al.  Chemical functionalization of graphene , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Xin Wang,et al.  Deposition of Co3O4nanoparticles onto exfoliated graphite oxide sheets , 2008 .

[29]  Ayhan Demirbas,et al.  Heavy metal adsorption onto agro-based waste materials: a review. , 2008, Journal of hazardous materials.

[30]  David N. Lerner,et al.  Groundwater in the Environment: An Introduction , 2007 .

[31]  F. Cannon,et al.  Arsenic removal by iron-modified activated carbon. , 2007, Water research.

[32]  Montserrat Filella,et al.  Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions , 2007 .

[33]  S. Asai,et al.  Magnetic Removal of Phosphate from Wastewater Using Schwertmannite , 2006 .

[34]  Staffan Skerfving,et al.  Antimony in brake pads-a carcinogenic component? , 2005 .

[35]  A. S. Koparal,et al.  Antimony removal from model acid solutions by electrodeposition , 2004 .

[36]  R. Okayasu,et al.  Inhibition of DNA-double strand break repair by antimony compounds. , 2002, Toxicology.

[37]  P. Thistlethwaite,et al.  Raman spectra and thermal transformations of ferrihydrite and schwertmannite , 2002 .

[38]  Montserrat Filella,et al.  Antimony in the environment: a review focused on natural waters: I. Occurrence , 2002 .

[39]  Shigeru Maeda,et al.  Adsorption and removal of antimony from aqueous solution by an activated Alumina , 2001 .

[40]  Y. Ho,et al.  Pseudo-second order model for sorption processes , 1999 .

[41]  N. Kotov,et al.  Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films , 1995 .

[42]  E. Sacher,et al.  X-ray photoelectron spectra of antimony oxides , 1989 .

[43]  W. Weber,et al.  Kinetics of Adsorption on Carbon from Solution , 1963 .

[44]  S. K. Lagergren,et al.  About the Theory of So-Called Adsorption of Soluble Substances , 1898 .