A Dicopper Platform that Stabilizes the Formation of Pentanuclear Coinage Metal Hydride Complexes.

Reduction of a dicopper(II) bis(hydroxide) complex with silanes in the presence of external copper or silver cations results in the formation of multinuclear hydride clusters, which were characterized by a variety of NMR spectroscopic experiments and X-ray crystallography. In particular, the pentanuclear complexes adopt an unusual planar "bow tie" configuration. The copper hydride complexes are efficient catalysts for the dehydrogenation of formic acid to H 2 and CO 2 .

[1]  Micah S. Ziegler,et al.  Isomerism and dynamic behavior of bridging phosphaalkynes bound to a dicopper complex , 2019, Chemical science.

[2]  M. Lutz,et al.  Cooperative H2 Activation on Dicopper(I) Facilitated by Reversible Dearomatization of an “Expanded PNNP Pincer” Ligand , 2019, Chemistry.

[3]  Takayuki Nakajima,et al.  Synergistic Cu2 Catalysts for Formic Acid Dehydrogenation. , 2019, Journal of the American Chemical Society.

[4]  S. Buchwald,et al.  CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. , 2018, Journal of the American Chemical Society.

[5]  Daniel S. Levine,et al.  Dicopper Alkyl Complexes: Synthesis, Structure, and Unexpected Persistence , 2018, Organometallics.

[6]  R. O'hair,et al.  How to Translate the [LCu2(H)]+‐Catalysed Selective Decomposition of Formic Acid into H2 and CO2 from the Gas Phase into a Zeolite. , 2018 .

[7]  A. White,et al.  Selective Reduction of CO2 to a Formate Equivalent with Heterobimetallic Gold- - -Copper Hydride Complexes. , 2017, Angewandte Chemie.

[8]  B. Kure,et al.  A Fluxional Cu8 H6 Cluster Supported by Bis(diphenylphosphino)methane and its Facile Reaction with CO2. , 2017, Chemistry.

[9]  D. Paley,et al.  Cationic Copper Hydride Clusters Arising from Oxidation of (Ph3P)6Cu6H6. , 2017, Journal of the American Chemical Society.

[10]  Micah S. Ziegler,et al.  Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide-Alkyne Cycloaddition. , 2017, Journal of the American Chemical Society.

[11]  P. Dugourd,et al.  Selectivity Effects in Bimetallic Catalysis: Role of the Metal Sites in the Decomposition of Formic Acid into H2 and CO2 by the Coinage Metal Binuclear Complexes [dppmMM′(H)]+ , 2017 .

[12]  G. Bertrand,et al.  Spectroscopic Evidence for a Monomeric Copper(I) Hydride and Crystallographic Characterization of a Monomeric Silver(I) Hydride. , 2017, Angewandte Chemie.

[13]  G. Reid,et al.  Synthesis, Structural Characterization, and Gas-Phase Unimolecular Reactivity of Bis(diphenylphosphino)amino Copper Hydride Nanoclusters [Cu3(X)(μ3-H)((PPh2)2NH)3](BF4), Where X = μ2-Cl and μ3-BH4. , 2016, Inorganic chemistry.

[14]  T. Cundari,et al.  A Dinitrogen Dicopper(I) Complex via a Mixed-Valence Dicopper Hydride. , 2016, Angewandte Chemie.

[15]  C. Philouze,et al.  Room-Temperature Characterization of a Mixed-Valent μ-Hydroxodicopper(II,III) Complex. , 2016, Inorganic chemistry.

[16]  G. Lalic,et al.  Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity. , 2016, Chemical reviews.

[17]  Daniel S. Levine,et al.  Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. , 2016, Journal of the American Chemical Society.

[18]  W. E. van Zyl,et al.  Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion. , 2016, Accounts of chemical research.

[19]  M. Chiang,et al.  Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. , 2015, Angewandte Chemie.

[20]  B. Kure,et al.  Facile insertion of carbon dioxide into Cu₂(μ-H) dinuclear units supported by tetraphosphine ligands. , 2014, Chemistry, an Asian journal.

[21]  J. Bacsa,et al.  Bonding and reactivity of a μ-hydrido dicopper cation. , 2013, Angewandte Chemie.

[22]  J. Norton,et al.  Electron transfer from hexameric copper hydrides. , 2013, Journal of the American Chemical Society.

[23]  B. Lipshutz,et al.  Asymmetric CuH-catalyzed hydrosilylations en route to the C-9 epimer of amphidinoketide iota. , 2007, Organic letters.

[24]  Martin Oestreich,et al.  Vom Schleifen eines “Rohdiamanten”: die “Cu-H”-Katalyse mit Silanen , 2007 .

[25]  M. Oestreich,et al.  Polishing a diamond in the rough: "Cu--H" catalysis with silanes. , 2007, Angewandte Chemie.

[26]  B. Lipshutz,et al.  CuH in a bottle: a convenient reagent for asymmetric hydrosilylations. , 2005, Angewandte Chemie.

[27]  N. Mankad,et al.  Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride , 2004 .

[28]  S. Buchwald,et al.  Copper-catalyzed asymmetric conjugate reduction as a route to novel beta-azaheterocyclic acid derivatives. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Lipshutz,et al.  Asymmetric hydrosilylation of aryl ketones catalyzed by copper hydride complexed by nonracemic biphenyl bis-phosphine ligands. , 2003, Journal of the American Chemical Society.

[30]  J. Sclafani,et al.  Copper Hydride-Catalyzed Tandem 1,4-Reduction/Alkylation Reactions , 2000 .

[31]  B. Lipshutz,et al.  A convenient, efficient method for conjugate reductions using catalytic quantities of Cu(I) , 1998 .

[32]  M. R. McLean,et al.  Neutron diffraction structure analysis of a hexanuclear copper hydrido complex, H6Cu6[P(p-tolyl)3]6: an unexpected finding , 1989 .

[33]  C. Raston,et al.  Lewis-Base Adducts of Group 11 Metal(I) Compounds. 49. Structural Characterization of hexameric and pentameric (triphenylphosphine)copper(I) hydrides , 1989 .

[34]  J. Stryker,et al.  Selective hydride-mediated conjugate reduction of .alpha.,.beta.-unsaturated carbonyl compounds using [(Ph3P)CuH]6 , 1988 .

[35]  G. Doyle,et al.  Mixed copper/iron clusters. The preparation and structure of the large planar cluster anions, Cu3Fe3(CO)123- and Cu5Fe4(CO)163-. , 1986, Journal of the American Chemical Society.