Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion

Abstract To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1°-averaged surface free-air gravity anomalies and POGO satellite magnetometer data for the United States, Mexico and Central America illustrate the capabilities of the method.

[1]  O. D. Kellogg Foundations of potential theory , 1934 .

[2]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[3]  C. N. G. Dampney,et al.  The equivalent source technique , 1969 .

[4]  W. M. Kaula,et al.  Theory of statistical analysis of data distributed over a sphere , 1967 .

[5]  Jean Plana Mémoire sur la Théorie du Magnétisme , 1855 .

[6]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[7]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[8]  M. A. Mayhew,et al.  Inversion of satellite magnetic anomaly data , 1979 .

[9]  L. L. Nettleton Gravity and magnetic calculations , 1942 .

[10]  D. A. Emilia Equivalent Sources Used As An Analytic Base For Processing Total Magnetic Field Profiles , 1973 .

[11]  C. Ku A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline , 1977 .

[12]  D. W. Smellie Elementary approximations in aeromagnetic interpretation , 1956 .

[13]  E. C. Kalkani,et al.  An efficient construction of equal-area fabric diagrams , 1979 .

[14]  J. Gillis,et al.  Linear Differential Operators , 1963 .

[15]  A. S. Ramsey The Theory of Newtonian Attraction. (Scientific Books: An Introduction to the Theory of Newtonian Attraction) , 1941 .

[16]  Robert A. Langel,et al.  A Proposed Model for the International Geomagnetic Reference Field-1965 , 1967 .

[17]  D. Jackson Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .

[18]  V. Klema LINPACK user's guide , 1980 .