On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection
暂无分享,去创建一个
[1] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[2] N. Anders Petersson,et al. Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..
[3] Robert D. Falgout,et al. Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..
[4] Robert D. Falgout,et al. Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..
[5] Ben S. Southworth,et al. Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..
[6] Scott P. MacLachlan,et al. A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..
[7] Alexander J. M. Howse,et al. Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations , 2017 .
[8] Hans De Sterck,et al. Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations , 2019, SIAM J. Sci. Comput..
[9] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[10] Daniel Ruprecht,et al. Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..
[11] Jan S. Hesthaven,et al. Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations , 2018, J. Comput. Phys..
[12] Hans De Sterck,et al. Convergence analysis for parallel‐in‐time solution of hyperbolic systems , 2019, Numer. Linear Algebra Appl..
[13] Robert D. Falgout,et al. Parallel time integration with multigrid , 2014 .