On selecting coarse-grid operators for Parareal and MGRIT applied to linear advection

We consider the parallel time integration of the linear advection equation with the Parareal and two-level multigrid-reduction-in-time (MGRIT) algorithms. Our aim is to develop a better understanding of the convergence behaviour of these algorithms for this problem, which is known to be poor relative to the diffusion equation, its model parabolic counterpart. Using Fourier analysis, we derive new convergence estimates for these algorithms which, in conjunction with existing convergence theory, provide insight into the origins of this poor performance. We then use this theory to explore improved coarse-grid time-stepping operators. For several high-order discretizations of the advection equation, we demonstrate that there exist non-standard coarse-grid time stepping operators that yield significant improvements over the standard choice of rediscretization.

[1]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[2]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[3]  Robert D. Falgout,et al.  Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..

[4]  Robert D. Falgout,et al.  Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..

[5]  Ben S. Southworth,et al.  Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..

[6]  Scott P. MacLachlan,et al.  A generalized predictive analysis tool for multigrid methods , 2015, Numer. Linear Algebra Appl..

[7]  Alexander J. M. Howse,et al.  Nonlinear Preconditioning Methods for Optimization and Parallel-In-Time Methods for 1D Scalar Hyperbolic Partial Differential Equations , 2017 .

[8]  Hans De Sterck,et al.  Parallel-In-Time Multigrid with Adaptive Spatial Coarsening for The Linear Advection and Inviscid Burgers Equations , 2019, SIAM J. Sci. Comput..

[9]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[10]  Daniel Ruprecht,et al.  Wave propagation characteristics of Parareal , 2017, Comput. Vis. Sci..

[11]  Jan S. Hesthaven,et al.  Communication-aware adaptive Parareal with application to a nonlinear hyperbolic system of partial differential equations , 2018, J. Comput. Phys..

[12]  Hans De Sterck,et al.  Convergence analysis for parallel‐in‐time solution of hyperbolic systems , 2019, Numer. Linear Algebra Appl..

[13]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2014 .