한국인 화자의 외래어 발음 변이 양상과 음절 기반 외래어 자소-음소 변환

This paper aims to analyze pronunciation variations of loanwords produced by Korean and improve the performance of pronunciation modeling of loanwords in Korean by using syllable-based segmentation and phonological knowledge. The loanword text corpus used for our experiment consists of 14.5k words extracted from the frequently used words in set-top box, music, and point-of-interest (POI) domains. At first, pronunciations of loanwords in Korean are obtained by manual transcriptions, which are used as target pronunciations. The target pronunciations are compared with the standard pronunciation using confusion matrices for analysis of pronunciation variation patterns of loanwords. Based on the confusion matrices, three salient pronunciation variations of loanwords are identified such as tensification of fricative [s] and derounding of rounded vowel [?i] and [w?]. In addition, a syllable-based segmentation method considering phonological knowledge is proposed for loanword pronunciation modeling. Performance of the baseline and the proposed method is measured using phone error rate (PER)/word error rate (WER) and F-score at various context spans. Experimental results show that the proposed method outperforms the baseline. We also observe that performance degrades when training and test sets come from different domains, which implies that loanword pronunciations are influenced by data domains. It is noteworthy that pronunciation modeling for loanwords is enhanced by reflecting phonological knowledge. The loanword pronunciation modeling in Korean proposed in this paper can be used for automatic speech recognition of application interface such as navigation systems and set-top boxes and for computer-assisted pronunciation training for Korean learners of English.