Functionalized graphene sheet as a dispersible fuel additive for catalytic decomposition of methylcyclohexane

[1]  Shengji Li,et al.  Ignition and combustion characteristics of jet fuel liquid film containing graphene powders at meso-scale , 2016 .

[2]  Saad Tanvir,et al.  Droplet burning rate enhancement of ethanol with the addition of graphite nanoparticles: Influence of radiation absorption , 2016 .

[3]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[4]  F. Zhao,et al.  Highly energetic compositions based on functionalized carbon nanomaterials. , 2016, Nanoscale.

[5]  S. S. Kumar,et al.  Experimental investigation on thermal performance of kerosene–graphene nanofluid , 2016 .

[6]  Guozhu Liu,et al.  Quasi-homogeneous catalytic cracking of JP-10 over high hydrocarbon dispersible nanozeolites , 2015 .

[7]  Jochen Bandlow,et al.  Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. , 2014, Physical chemistry chemical physics : PCCP.

[8]  Yushi Wen,et al.  Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: molecular dynamic simulations by molecular reactive force field. , 2014, ACS applied materials & interfaces.

[9]  Li Wang,et al.  Oleylamine-Protected Metal (Pt, Pd) Nanoparticles for Pseudohomogeneous Catalytic Cracking of JP-10 Jet Fuel , 2014 .

[10]  Yongsheng Guo,et al.  A novel well-dispersed nano-Ni catalyst for endothermic reaction of JP-10 , 2014 .

[11]  F. Castro-Marcano,et al.  Comparison of thermal and catalytic cracking of 1-heptene from ReaxFF reactive molecular dynamics simulations , 2013 .

[12]  R. Car,et al.  Enhanced thermal decomposition of nitromethane on functionalized graphene sheets: ab initio molecular dynamics simulations. , 2012, Journal of the American Chemical Society.

[13]  S. H. Kim,et al.  Coke Formation during Thermal Decomposition of Methylcyclohexane by Alkyl Substituted C5 Ring Hydrocarbons under Supercritical Conditions , 2012 .

[14]  Xiangyuan Li,et al.  Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics. , 2012, The journal of physical chemistry. A.

[15]  M. Pantoya,et al.  Experimentally measured thermal transport properties of aluminum–polytetrafluoroethylene nanocomposites with graphene and carbon nanotube additives , 2012 .

[16]  L. Qiao,et al.  Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations , 2012 .

[17]  Guozhu Liu,et al.  Quasi-homogeneous catalytic activities of hydrocarbon dispersible HZSM-5 nanocrystals grafted with different alkyl groups , 2011 .

[18]  Adri C. T. van Duin,et al.  Atomistic-scale simulations of chemical reactions: Bridging from quantum chemistry to engineering , 2011 .

[19]  L. Qiao,et al.  Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles , 2011 .

[20]  J. Pyun Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. , 2011, Angewandte Chemie.

[21]  Guozhu Liu,et al.  New Method of Catalytic Cracking of Hydrocarbon Fuels Using a Highly Dispersed Nano-HZSM-5 Catalyst , 2010 .

[22]  David T. Wickham,et al.  Methane ignition catalyzed by in situ generated palladium nanoparticles , 2010 .

[23]  Xingfa Gao,et al.  Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design , 2010 .

[24]  Frederick L Dryer,et al.  Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. , 2009, ACS nano.

[25]  E. Dreizin,et al.  Metal-based reactive nanomaterials , 2009 .

[26]  K. Pant,et al.  Mechanistic Modelling of the Catalytic Pyrolysis of Methylcyclohexane , 2008 .

[27]  Himanshu Tyagi,et al.  Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. , 2008, Nano letters.

[28]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[29]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[30]  J. R. Engel,et al.  Soluble nano-catalysts for high performance fuels , 2006 .

[31]  S. Anderson,et al.  Breakdown and Combustion of JP-10 Fuel Catalyzed by Nanoparticulate CeO2 and Fe2O3 , 2006 .

[32]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[33]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[34]  He Huang,et al.  Fuel-Cooled Thermal Management for Advanced Aeroengines , 2004 .

[35]  He Huang,et al.  Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling AIAA 2002-3871 , 2002 .

[36]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[37]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[38]  Chunshan Song,et al.  Pyrolysis of alkylcyclohexanes in or near the supercritical phase. Product distribution and reaction pathways , 1996 .

[39]  H. C. Foley Carbogenic molecular sieves: synthesis, properties and applications , 1995 .

[40]  David R. Sobel,et al.  Hydrocarbon Fuel Cooling Technologies for Advanced Propulsion , 1995 .

[41]  Tim Edwards,et al.  Supercritical fuel deposition mechanisms , 1993 .

[42]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[43]  L. Staudenmaier,et al.  Verfahren zur Darstellung der Graphitsäure , 1898 .

[44]  H. Sim Understanding the role of multifunctional nanoengineered particulate additives on supercritical pyrolysis and combustion of hydrocarbon fuels/propellants , 2016 .

[45]  R. Yetter,et al.  Polyoxometalate clusters supported on functionalized graphene sheets as nanohybrids for the catalytic combustion of liquid fuels , 2012 .

[46]  Andrew M. Berkowitz,et al.  The photo-induced ignition of quiescent ethylene/air mixtures containing suspended carbon nanotubes , 2011 .

[47]  Chih-Jen Sung,et al.  An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels , 2011 .

[48]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[49]  Bradley D. Hitch,et al.  Additives to Improve Fuel Heat Sink Capacity in Air/Fuel Heat Exchangers , 2008 .

[50]  K. Kuo,et al.  Potential Usage of Energetic Nano-sized Powders for Combustion and Rocket Propulsion , 2003 .

[51]  J. Stewart Supercritical pyrolysis of the endothermic fuels methylcyclohexane, decalin, and tetralin , 1999 .

[52]  F. Rodríguez-Reinoso,et al.  The role of carbon materials in heterogeneous catalysis , 1998 .

[53]  C. Márquez-Álvarez,et al.  Removal of no over carbon-supported copper catalysts. I. Reactivity of no with graphite and activated carbon , 1996 .

[54]  A. Guerrero-Ruíz,et al.  Oxydehydrogenation of ethylbenzene to styrene catalyzed by graphites and activated carbons , 1994 .

[55]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .