Inversion of Land Surface Temperature (LST) Using Terra ASTER Data: A Comparison of Three Algorithms

Land Surface Temperature (LST) is an important measurement in studies related to the Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard the Terra spacecraft is the currently available Thermal Infrared (TIR) imaging sensor with the highest spatial resolution. This study involves the comparison of LSTs inverted from the sensor using the Split Window Algorithm (SWA), the Single Channel Algorithm (SCA) and the Planck function. This study has used the National Oceanic and Atmospheric Administration’s (NOAA) data to model and compare the results from the three algorithms. The data from the sensor have been processed by the Python programming language in a free and open source software package (QGIS) to enable users to make use of the algorithms. The study revealed that the three algorithms are suitable for LST inversion, whereby the Planck function showed the highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy. The algorithms produced results with Root Mean Square Errors (RMSE) of 2.29 K, 3.77 K and 2.88 K for the Planck function, the SCA and SWA respectively.

[1]  D. Lu,et al.  Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies , 2004 .

[2]  C. DaCamara,et al.  Land surface temperature and emissivity estimation based on the two-temperature method: sensitivity analysis using simulated MSG/SEVIRI data , 2004 .

[3]  Juan C. Jiménez-Muñoz,et al.  Feasibility of Retrieving Land-Surface Temperature From ASTER TIR Bands Using Two-Channel Algorithms: A Case Study of Agricultural Areas , 2007, IEEE Geoscience and Remote Sensing Letters.

[4]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[5]  Songhan Wang,et al.  Practical split-window algorithm for retrieving land surface temperature over agricultural areas from ASTER data , 2014 .

[6]  W. C. Snyder,et al.  Classification-based emissivity for land surface temperature measurement from space , 1998 .

[7]  Shunlin Liang,et al.  Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites , 2009 .

[8]  José A. Sobrino,et al.  Improved land surface emissivities over agricultural areas using ASTER NDVI , 2006 .

[9]  M. R. Saradjian,et al.  Evaluating NDVI-based emissivities of MODIS bands 31 and 32 using emissivities derived by Day/Night LST algorithm , 2007 .

[10]  Antonio J. Plaza,et al.  Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[12]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[13]  V. Caselles,et al.  Mapping land surface emissivity from NDVI: Application to European, African, and South American areas , 1996 .

[14]  Tony Greicius,et al.  NASA, Japan Make ASTER Earth Data Available At No Cost , 2016 .

[15]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[16]  Enric Valor,et al.  Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data , 1997 .

[17]  J. V. van Aardt,et al.  SOUTHERN FORESTS , 2022 .

[18]  Lin Liu,et al.  Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong , 2011, Remote. Sens..

[19]  Javed Mallick,et al.  Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[20]  A. Karnieli,et al.  Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data , 2001 .

[21]  Andrew K. Heidinger,et al.  Using SURFRAD to Verify the NOAA Single-Channel Land Surface Temperature Algorithm , 2013 .

[22]  Mao Ke-biao,et al.  A Split-window Algorithm for Retrieving Land-Surface Temperature from ASTER Data , 2006 .

[23]  Leonardo F. Peres,et al.  Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Miquel Ninyerola,et al.  Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[25]  J. A. Sobrino,et al.  Surface temperature and water vapour retrieval from MODIS data , 2003 .

[26]  C. Prabhakara,et al.  Remote sensing of the surface emissivity at 9 μm over the globe , 1976 .

[27]  Ugur Avdan,et al.  Application of Open Source Coding Technologies in the Production of Land Surface Temperature (LST) Maps from Landsat: A PyQGIS Plugin , 2016, Remote. Sens..

[28]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[29]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[30]  C. Long,et al.  SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research , 2000 .

[31]  D. Artis,et al.  Survey of emissivity variability in thermography of urban areas , 1982 .

[32]  Manfred Owe,et al.  On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces , 1993 .

[33]  Juan C. Jiménez-Muñoz,et al.  A Single-Channel Algorithm for Land-Surface Temperature Retrieval From ASTER Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[34]  B. Dousseta,et al.  Satellite multi-sensor data analysis of urban surface temperatures and landcover , 2003 .

[35]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[36]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[37]  José A. Sobrino,et al.  A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data , 2001 .

[38]  K. Moffett,et al.  Remote Sens , 2015 .

[39]  Xiaolei Yu,et al.  Land Surface Temperature Retrieval from Landsat 8 TIRS - Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method , 2014, Remote. Sens..

[40]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[41]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[42]  C. Cartalis,et al.  Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece , 2007 .

[43]  José A. Sobrino,et al.  Thermal remote sensing of land surface temperature from satellites: Current status and future prospects , 1995 .

[44]  M. Boori A Comparison of Land Surface Temperature, Derived from AMSR-2, Landsat and ASTER Satellite Data , 2015 .

[45]  Rachel T. Pinker,et al.  Retrieval of surface temperature from the MSG‐SEVIRI observations: Part I. Methodology , 2007 .