Development of Integrated Broad-Band CMOS Low-Noise Amplifiers

This paper presents a systematic design methodology for broad-band CMOS low-noise amplifiers (LNAs). The feedback technique is proposed to attain a better design tradeoff between gain and noise. The network synthesis is adopted for the implementation of broad-band matching networks. The sloped interstage matching is used for gain compensation. A fully integrated ultra-wide-band 0.18-mum CMOS LNA is developed following the design methodology. The measured noise figure is lower than 3.8 dB from 3 to 7.5 GHz, resulting in the excellent average noise figure of 3.48 dB. Operated on a 1.8-V supply, the LNA delivers 19.1-dB power gain and dissipates 32 mW of power. The gain-bandwidth product of the UWB LNA reaches 358 GHz, the record number for the 0.18-m CMOS broad-band amplifiers. The total chip size of the CMOS UWB LNA is 1.37 times 1.19 mm2.

[1]  Huey-Ru Chuang,et al.  0.18 μm 3-6 GHz CMOS broadband LNA for UWB radio , 2005 .

[2]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[3]  Kevin W. Kobayashi,et al.  A novel HBT distributed amplifier design topology based on attenuation compensation techniques , 1994 .

[4]  R. Saal,et al.  On the Design of Filters by Synthesis , 1958 .

[5]  A. Ziel Noise in solid state devices and circuits , 1986 .

[6]  A. Neviani,et al.  A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers , 2006, IEEE Microwave and Wireless Components Letters.

[7]  A.A. Abidi,et al.  A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network , 2004, IEEE Journal of Solid-State Circuits.

[8]  A.M. Pavio A Network Modeling and Design Method for a 2-18 GHz Feedback Amplifier , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[9]  Stephen A. Maas,et al.  Noise In Linear And Nonlinear Circuits , 2005 .

[10]  J. G. Linvill,et al.  Synthesi, of Interstage Networks of Prescribed Gain Versus Frequency Slopes , 1975 .

[11]  G. Gonzalez Microwave Transistor Amplifiers: Analysis and Design , 1984 .

[12]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[13]  F. Perez,et al.  A 0.15- 12-GHz Matched Feedback Amplifier Using Commercially Available FET's , 1982 .

[14]  Yi-Jan Emery Chen,et al.  A Fully-Integrated UWB CMOS LNA Using Network Synthesis Approach , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[15]  J S Seeley,et al.  New algorithms for synthesized design of optical filters. , 1985, Applied optics.

[16]  Dong Sam Ha,et al.  A systematic approach to CMOS low noise amplifier design for ultrawideband applications , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[17]  Kuo-Liang Deng,et al.  A 0.6-22-GHz broadband CMOS distributed amplifier , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[18]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005, IEEE Journal of Solid-State Circuits.

[19]  Yang Lu,et al.  A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Sanjit K. Mitra,et al.  Modern filter theory and design , 1973 .