Sliceplorer: 1D slices for multi‐dimensional continuous functions

Multi‐dimensional continuous functions are commonly visualized with 2D slices or topological views. Here, we explore 1D slices as an alternative approach to show such functions. Our goal with 1D slices is to combine the benefits of topological views, that is, screen space efficiency, with those of slices, that is a close resemblance of the underlying function. We compare 1D slices to 2D slices and topological views, first, by looking at their performance with respect to common function analysis tasks. We also demonstrate 3 usage scenarios: the 2D sinc function, neural network regression, and optimization traces. Based on this evaluation, we characterize the advantages and drawbacks of each of these approaches, and show how interaction can be used to overcome some of the shortcomings.

[1]  John T. Stasko,et al.  Mental Models, Visual Reasoning and Interaction in Information Visualization: A Top-down Perspective , 2010, IEEE Transactions on Visualization and Computer Graphics.

[2]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[3]  Tobias Isenberg,et al.  A Systematic Review on the Practice of Evaluating Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[4]  Dirk J. Lehmann,et al.  General Projective Maps for Multidimensional Data Projection , 2016, Comput. Graph. Forum.

[5]  Peter Lindstrom,et al.  Topological Spines: A Structure-preserving Visual Representation of Scalar Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Melanie Tory,et al.  Rethinking Visualization: A High-Level Taxonomy , 2004 .

[7]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[8]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[10]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[11]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[12]  Nancy Argüelles,et al.  Author ' s , 2008 .

[13]  John T. Stasko,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[14]  J. V. van Wijk,et al.  HyperSlice: visualization of scalar functions of many variables , 1993, VIS '93.

[15]  Daniel Weiskopf,et al.  Continuous Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[16]  Ohad Shamir,et al.  The Power of Depth for Feedforward Neural Networks , 2015, COLT.

[17]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[18]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[19]  Ben Shneiderman,et al.  Interactive Dynamics for Visual Analysis , 2012 .

[20]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[21]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[22]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[23]  Samuel Gerber,et al.  Data Analysis with the Morse-Smale Complex: The msr Package for R , 2012 .

[24]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .

[25]  Jacques Bertin,et al.  Semiologie graphique : les diagrammes les réseaux, les cartes , 1969 .

[26]  J. Hartigan Printer graphics for clustering , 1975 .

[27]  Lars Huettenberger,et al.  Decomposition and Simplification of Multivariate Data using Pareto Sets , 2014, IEEE Transactions on Visualization and Computer Graphics.

[28]  Aaron Knoll,et al.  Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis , 2012, IEEE Transactions on Visualization and Computer Graphics.

[29]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[30]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[31]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[32]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[33]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[35]  Dirk J. Lehmann,et al.  Optimal Sets of Projections of High-Dimensional Data , 2016, IEEE Transactions on Visualization and Computer Graphics.

[36]  Michael Gleicher,et al.  A Framework for Considering Comprehensibility in Modeling , 2016, Big Data.

[37]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[38]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[39]  Aaron Knoll,et al.  Fiber Surfaces: Generalizing Isosurfaces to Bivariate Data , 2015, Comput. Graph. Forum.

[40]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[41]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[42]  Valerio Pascucci,et al.  Visual Exploration of High Dimensional Scalar Functions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[43]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[44]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[45]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[46]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[47]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[48]  Peter Filzmoser,et al.  Uncertainty‐Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction , 2011, Comput. Graph. Forum.

[49]  Daniel Weiskopf,et al.  Continuous Scatterplots , 2008, IEEE Transactions on Visualization and Computer Graphics.

[50]  Jack Snoeyink,et al.  Path Seeds and Flexible Isosurfaces - Using Topology for Exploratory Visualization , 2003, VisSym.