Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si–C bonds

Silicon chips form the backbone of modern computing and yet until recently, the surface chemistry of this technologically essential material has remained relatively unexplored. As the size of devices on silicon wafers shrink (towards gigascale integration), the surface characteristics play increasingly crucial roles in the proper functioning of the device since the ratio of surface atoms/bulk escalates. While surface oxide has served thus far as the main passivation route, there is strong interest in precisely tailoring the interface properties, not only for microelectronics, but other applications including sensors, MEMS and biologically active surfaces. As a result, organometallic and organic chemistry has become essential for the synthesis of functional, modifiable monolayers, bound to non-oxidized silicon surfaces through silicon–carbon bonds. The latest approaches towards preparation of monolayers through Si–C bonds on both flat and photoluminescent porous silicon are described. Wet chemical techniques, accessible to most organometallic/organic chemists are highlighted, but recent developments using UHV conditions also receive attention.

[1]  L. Canham,et al.  Transition Metal Complex-Doped Hydroxyapatite Layers on Porous Silicon , 1998 .

[2]  K. Oertle,et al.  Hydrosilylation of tetrasubstituted olefins , 1985 .

[3]  Y. Chabal,et al.  Ideal hydrogen termination of the Si (111) surface , 1990 .

[4]  R. Hamers,et al.  Controlled formation of organic layers on semiconductor surfaces , 1997 .

[5]  M. Suginome,et al.  Palladium(II) acetate-tert-alkyl isocyanide as a highly efficient catalyst for the inter- and intramolecular bis-silylation of carbon-carbon triple bonds , 1991 .

[6]  Matthew R. Linford,et al.  Alkyl monolayers covalently bonded to silicon surfaces , 1993 .

[7]  J. Yoshinobu,et al.  The adsorbed states of ethylene on Si(100)c(4×2), Si(100)(2×1), and vicinal Si(100) 9°: Electron energy loss spectroscopy and low‐energy electron diffraction studies , 1987 .

[8]  A. Bocarsly,et al.  High efficiency chemical etchant for the formation of luminescent porous silicon , 1994 .

[9]  Michael J. Sailor,et al.  Reversible luminescence quenching of porous silicon by solvents , 1992 .

[10]  W. J. Choyke,et al.  Reaction chemistry at the Si (100) surface—control through active‐site manipulation , 1986 .

[11]  J. Yates,et al.  Surface Chemistry of Silicon. , 1995 .

[12]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[13]  L. Schlapbach,et al.  Chemical vapor deposition of diamond growth using a chemical precursor , 1998 .

[14]  F. Effenberger,et al.  Photoactivated Preparation and Patterning of Self-Assembled Monolayers with 1-Alkenes and Aldehydes on Silicon Hydride Surfaces. , 1998, Angewandte Chemie.

[15]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[16]  R. Hamers,et al.  Formation of Ordered, Anisotropic Organic Monolayers on the Si(001) Surface , 1997 .

[17]  R. Hamers,et al.  STEREOSELECTIVITY IN MOLECULE-SURFACE REACTIONS : ADSORPTION OF ETHYLENE ON THE SILICON(001) SURFACE , 1997 .

[18]  M. Sailor,et al.  Chemical Modification of the Photoluminescence Quenching of Porous Silicon , 1993, Science.

[19]  L. Zazzera,et al.  Bonding Organic Molecules to Hydrogen‐Terminated Silicon Wafers , 1997 .

[20]  W. J. Choyke,et al.  Defect- and electron-enhanced chemistry at silicon surfaces: Reactivity and thermal desorption of propylene on Si(100)-(2 × 1) , 1986 .

[21]  Ikuo Suemune,et al.  Luminescent porous silicon synthesized by visible light irradiation , 1993 .

[22]  Paul E. Laibinis,et al.  THERMAL DERIVATIZATION OF POROUS SILICON WITH ALCOHOLS , 1997 .

[23]  R. Hamers,et al.  Structure and Bonding of Ordered Organic Monolayers of 1,3,5,7-Cyclooctatetraene on the Si(001) Surface: Surface Cycloaddition Chemistry of an Antiaromatic Molecule , 1998 .

[24]  J. E. Bateman,et al.  Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes. , 1998, Angewandte Chemie.

[25]  J. Yates A New Opportunity in Silicon-Based Microelectronics , 1998, Science.

[26]  George M. Whitesides,et al.  Fabrication of Silicon MOSFETs Using Soft Lithography , 1998 .

[27]  M. Sailor,et al.  Light-Induced Reactions of Porous and Single-Crystal Si Surfaces with Carboxylic Acids , 1996 .

[28]  S. Bent,et al.  Vibrational Spectroscopic Studies of Diels−Alder Reactions with the Si(100)-2×1 Surface as a Dienophile , 1997 .

[29]  Larry Neil Lewis,et al.  On the mechanism of metal colloid catalyzed hydrosilylation: proposed explanations for electronic effects and oxygen cocatalysis , 1990 .

[30]  M. Linford,et al.  Bioreactive self-assembled monolayers on hydrogen-passivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy. , 1997, Journal of structural biology.

[31]  L. Canham Laser dye impregnation of oxidized porous silicon on silicon wafers , 1993 .

[32]  N. Rösch,et al.  Electronic structure of benzene adsorbed on single-domain Si(001)-(2×1): A combined experimental and theoretical study , 1998 .

[33]  W. H. Jeu,et al.  Highly Stable Si−C Linked Functionalized Monolayers on the Silicon (100) Surface , 1998 .

[34]  Amit Kumar,et al.  X-ray photoelectron spectroscopic studies of interfacial chemistry at n-type silicon/liquid junctions , 1992 .

[35]  R. Hamers,et al.  Cycloaddition Chemistry of 1,3-Dienes on the Silicon(001) Surface: Competition between (4 + 2) and (2 + 2) Reactions , 1998 .

[36]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[37]  E. Veje,et al.  Photoinduced synthesis of porous silicon without anodization , 1995 .

[38]  J. Buriak,et al.  LEWIS ACID MEDIATED FUNCTIONALIZATION OF POROUS SILICON WITH SUBSTITUTED ALKENES AND ALKYNES , 1998 .

[39]  J. Pinson,et al.  Electrochemical Formation of Close-Packed Phenyl Layers on Si(111) , 1997 .

[40]  P. E. Laibinis,et al.  Derivatization of Porous Silicon by Grignard Reagents at Room Temperature , 1998 .

[41]  C. Chatgilialoglu Organosilanes as radical-based reducing agents in synthesis , 1992 .

[42]  Yoshinori Yamamoto,et al.  Lewis Acid-Catalyzed trans-Hydrosilylation of Alkynes. , 1996, The Journal of organic chemistry.

[43]  R. Hamers,et al.  Voltage-Dependent STM Images of Covalently Bound Molecules on Si(100) , 1998 .

[44]  S. Bent,et al.  Diels-Alder reactions of butadienes with the Si(100)-2×1 surface as a dienophile: Vibrational spectroscopy, thermal desorption and near edge x-ray absorption fine structure studies , 1998 .

[45]  R. Maboudian,et al.  Thermal behavior of alkyl monolayers on silicon surfaces , 1997 .

[46]  W. H. Weinberg,et al.  Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route , 1996 .

[47]  R. Hamers,et al.  An X-ray photoelectron spectroscopy study of the bonding of unsaturated organic molecules to the Si(001) surface , 1998 .

[48]  J. Buriak,et al.  Photoluminescence of porous silicon surfaces stabilized through Lewis acid mediated hydrosilylation , 1998 .

[49]  M. Linford,et al.  Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction , 1997 .

[50]  M. Sailor,et al.  Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. , 1996, Analytical chemistry.

[51]  W. H. Weinberg,et al.  Adsorption and decomposition of acetylene on Si(100)-(2×1) , 1992 .

[52]  Jae Hee Song,et al.  Functionalization of Nanocrystalline Porous Silicon Surfaces with Aryllithium Reagents: Formation of Silicon−Carbon Bonds by Cleavage of Silicon−Silicon Bonds , 1998 .

[53]  M. Sailor,et al.  Luminescent Color Image Generation on Porous Silicon , 1992, Science.

[54]  G. S. Higashi,et al.  Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF , 1991 .

[55]  B. Marciniec,et al.  Recent advances in catalytic hydrosilylation , 1993 .

[56]  R. Hamers,et al.  Structure and Bonding of Ordered Organic Monolayers of 1,5-Cyclooctadiene on the Silicon(001) Surface , 1997 .

[57]  D. Doren,et al.  Theoretical Prediction of a Facile Diels−Alder Reaction on the Si(100)-2×1 Surface , 1997 .

[58]  R. Muller,et al.  Chemical Surface Modification of Porous Silicon , 1993 .