Wavelength-versatile optical vortex lasers

The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

[1]  H. Rubinsztein-Dunlop,et al.  Mechanical Effects of Optical Vortices , 1999 .

[2]  Yixin Zhang,et al.  Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean. , 2017, Optics express.

[3]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[4]  R. Morita,et al.  Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator , 2009 .

[5]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  G. K. Samanta,et al.  Airy beam optical parametric oscillator , 2016, Scientific Reports.

[7]  Ryuji Morita,et al.  Transfer of light helicity to nanostructures. , 2013, Physical review letters.

[8]  T. Yatagai,et al.  Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO(4) 1.3-mum bounce laser. , 2007, Optics express.

[9]  T. Omatsu,et al.  Handedness control in a tunable midinfrared (6.0–12.5 μm) vortex laser , 2015 .

[10]  Michael J. Damzen,et al.  High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design , 2009 .

[11]  T. Omatsu,et al.  Tunable mid-infrared (6.3-12 μm)optical vortex pulse generation. , 2014, Optics express.

[12]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[13]  Miles J Padgett,et al.  Orbital angular momentum 25 years on [Invited]. , 2017, Optics express.

[14]  Ultraviolet vortex generation using periodically bonded β-BaB₂O₄ device. , 2014, Optics express.

[15]  D. Grier A revolution in optical manipulation , 2003, Nature.

[16]  S. Syubaev Direct laser printing of chiral plasmonic nanojets by vortex beams , 2018 .

[17]  J. Bisson,et al.  Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping , 2005 .

[18]  Stefan W. Hell,et al.  Multicolour Multilevel STED nanoscopy of Actin/Spectrin Organization at Synapses , 2016, Scientific Reports.

[19]  Michael V Berry,et al.  Optical vortices evolving from helicoidal integer and fractional phase steps , 2004 .

[20]  J. Strohaber Frame dragging with optical vortices , 2011, 1112.3414.

[21]  Simpson,et al.  Second-harmonic generation and the orbital angular momentum of light. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation. , 2012, Optics letters.

[23]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[24]  V. Arrizon,et al.  Simple technique for generating the perfect optical vortex. , 2014, Optics letters.

[25]  Robert W. Boyd,et al.  Divergence of an orbital-angular-momentum-carrying beam upon propagation , 2014, 1410.8722.

[26]  Andrew Forbes,et al.  Creation and detection of optical modes with spatial light modulators , 2016 .

[27]  A. A. Almazov,et al.  Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Naoya Matsumoto,et al.  Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[30]  G G Paulus,et al.  In situ tomography of femtosecond optical beams with a holographic knife-edge. , 2011, Optics express.

[31]  J. Diels,et al.  On the co-existence of IR and UV optical filaments , 2015 .

[32]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[33]  S. Araki,et al.  Octave-band tunable optical vortex parametric oscillator. , 2016, Optics express.

[34]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[35]  M W Berns,et al.  Ablation of bone and methacrylate by a prototype mid‐infrared erbium:YAG laser , 1988, Lasers in surgery and medicine.

[36]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[37]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[38]  Takashige Omatsu,et al.  Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. , 2003, Optics express.

[39]  Ebrahim Karimi,et al.  Q-plate enabled spectrally diverse orbital-angular- momentum conversion for stimulated emission depletion microscopy , 2015 .

[40]  Takashige Omatsu,et al.  Light induced conch-shaped relief in an azo-polymer film , 2014, Scientific reports.

[41]  G. K. Samanta,et al.  Controlled switching of orbital angular momentum in an optical parametric oscillator , 2017 .

[42]  Andrew Forbes,et al.  Controlling light’s helicity at the source: orbital angular momentum states from lasers , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  T. Omatsu,et al.  Optical vortex pumped mid-infrared optical parametric oscillator. , 2011, Optics express.

[44]  W. Clarkson,et al.  High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output. , 2011, Optics express.

[45]  S. Barnett,et al.  Optical orbital angular momentum , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  J. P. Woerdman,et al.  Production and characterization of spiral phase plates for optical wavelengths. , 2004, Applied optics.

[47]  Johannes Courtial,et al.  Light’s Orbital Angular Momentum , 2004 .

[48]  W. Clarkson,et al.  Q-switched Nd:YAG optical vortex lasers. , 2013, Optics express.

[49]  K. Otsuka,et al.  Numerical study for selective excitation of Ince-Gaussian modes in end-pumped solid-state lasers. , 2007, Optics express.

[50]  S. Barnett,et al.  Detection of a Spinning Object Using Light’s Orbital Angular Momentum , 2013, Science.

[51]  Robert R McLeod,et al.  Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography , 2009, Science.

[52]  Daisuke Barada,et al.  Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination , 2016 .

[53]  Hiromasa Ito,et al.  Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator. , 2007, Optics letters.

[54]  Sung-Keun Lee,et al.  3D microfabrication with inclined/rotated UV lithography , 2004 .

[55]  Shunichi Sato,et al.  Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror , 2012 .

[56]  David E. Zelmon,et al.  Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices , 2001 .

[57]  Walter J. Dressick,et al.  Deep UV Photochemistry of Chemisorbed Monolayers : Patterned Coplanar Molecular Assemblies " , .

[58]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[59]  Yiqiong Zhao,et al.  Using polarization-shaped optical vortex traps for single-cell nanosurgery. , 2007, Nano letters.

[60]  J. Donegan,et al.  There are many ways to spin a photon: Half-quantization of a total optical angular momentum , 2016, Science Advances.

[61]  Huang Chaoen,et al.  A new nonlinear optical crystal KTP , 1985 .

[62]  Akihiko Ito,et al.  Generation of hollow scalar and vector beams using a spot-defect mirror. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[63]  Hirofumi Hidai,et al.  Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle , 2016, Scientific Reports.

[64]  Nobuo Takeuchi,et al.  Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser , 2001 .

[65]  Hirofumi Hidai,et al.  Optical vortex pulse illumination to create chiral monocrystalline silicon nanostructures , 2016 .

[66]  K. Midorikawa,et al.  Conical third-harmonic generation of optical vortex through ultrashort laser filamentation in air. , 2016, Optics express.

[67]  Y. Chen,et al.  Power scale-up and propagation evolution of structured laser beams concentrated on 3D Lissajous parametric surfaces , 2014 .

[68]  Ryuji Morita,et al.  Metal microneedle fabrication using twisted light with spin. , 2010, Optics express.

[69]  W. A. Clarkson,et al.  Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[70]  Andrew Forbes,et al.  Controlled generation of higher-order Poincaré sphere beams from a laser , 2015, Nature Photonics.

[71]  Valerijus Smilgevicius,et al.  Sum-frequency mixing of optical vortices in nonlinear crystals , 1998 .

[72]  Zheshuai Lin,et al.  The development of new borate-based UV nonlinear optical crystals , 2005 .

[73]  Andrew J. Lee,et al.  Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. , 2013, Optics express.

[74]  Yicheng Wu,et al.  New nonlinear-optical crystal: LiB 3 O 5 , 1989 .

[75]  Shuangchun Wen,et al.  Geometric phase Doppler effect: when structured light meets rotating structured materials. , 2017, Optics express.

[76]  Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator , 2017 .

[77]  A. Willner,et al.  Optical communications using orbital angular momentum beams , 2015 .

[78]  Generation of femtosecond optical vortices by molecular modulation in a Raman-active crystal , 2013, CLEO: 2013.

[79]  M. Damzen,et al.  Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation. , 2016, Optics express.

[80]  P. Nussenzveig,et al.  Orbital angular momentum exchange in an optical parametric oscillator , 2004 .

[81]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[82]  A continuous-wave vortex Raman laser with sum frequency generation , 2016 .

[83]  Helen M. Pask,et al.  The design and operation of solid-state Raman lasers , 2003 .

[84]  Takashige Omatsu,et al.  An intracavity, frequency-doubled self-Raman vortex laser. , 2014, Optics express.

[85]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[86]  I. Shoji,et al.  Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating β-BaB2O4 Device with a New Structure Fabricated by Room-Temperature Bonding , 2012 .

[87]  A. Arie,et al.  Airy beam laser. , 2011, Optics letters.

[88]  X.-C. Yuan,et al.  Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step , 2004, physics/0403118.

[89]  Darrell Armstrong,et al.  Generation of vortex beams by an image-rotating optical parametric oscillator. , 2003, Optics express.

[90]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[91]  Andrew Forbes,et al.  A digital laser for on-demand laser modes , 2013, Nature Communications.

[92]  Widely-tunable vortex output from a singly resonant optical parametric oscillator. , 2015, Optics express.

[93]  T. Omatsu,et al.  Tunable 3 µm optical vortex parametric oscillator , 2012, Optics express.