Localization of the Contacts Between Kenyon Cells and Aminergic Neurons in the Drosophila melanogaster Brain Using SplitGFP Reconstitution

The mushroom body of the insect brain represents a neuronal circuit involved in the control of adaptive behavior, e.g., associative learning. Its function relies on the modulation of Kenyon cell activity or synaptic transmitter release by biogenic amines, e.g., octopamine, dopamine, or serotonin. Therefore, for a comprehensive understanding of the mushroom body, it is of interest not only to determine which modulatory neurons interact with Kenyon cells but also to pinpoint where exactly in the mushroom body they do so. To accomplish the latter, we made use of the GRASP technique and created transgenic Drosophila melanogaster that carry one part of a membrane‐bound splitGFP in Kenyon cells, along with a cytosolic red fluorescent marker. The second part of the splitGFP is expressed in distinct neuronal populations using cell‐specific Gal4 drivers. GFP is reconstituted only if these neurons interact with Kenyon cells in close proximity, which, in combination with two‐photon microscopy, provides a very high spatial resolution. We characterize spatially and microstructurally distinct contact regions between Kenyon cells and dopaminergic, serotonergic, and octopaminergic/tyraminergic neurons in all subdivisions of the mushroom body. Subpopulations of dopaminergic neurons contact complementary lobe regions densely. Octopaminergic/tyraminergic neurons contact Kenyon cells sparsely and are restricted mainly to the calyx, the α′‐lobes, and the γ‐lobes. Contacts of Kenyon cells with serotonergic neurons are heterogeneously distributed over the entire mushroom body. In summary, the technique enables us to localize precisely a segmentation of the mushroom body by differential contacts with aminergic neurons. J. Comp. Neurol. 521:3992–4026, 2013. © 2013 Wiley Periodicals, Inc.

[1]  Ann-Shyn Chiang,et al.  A Map of Olfactory Representation in the Drosophila Mushroom Body , 2007, Cell.

[2]  Irina Sinakevitch,et al.  Ground plan of the insect mushroom body: Functional and evolutionary implications , 2009, The Journal of comparative neurology.

[3]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[4]  B. Smith,et al.  Distribution of the Octopamine Receptor AmOA1 in the Honey Bee Brain , 2011, PloS one.

[5]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[6]  K. White,et al.  Serotonin‐containing neurons in Drosophila melanogaster: Development and distribution , 1988, The Journal of comparative neurology.

[7]  Troy Zars,et al.  Serotonin is necessary for place memory in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[8]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[9]  C. Leibold,et al.  Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control , 2002, Genesis.

[10]  N. Strausfeld,et al.  Subdivision of the drosophila mushroom bodies by enhancer-trap expression patterns , 1995, Neuron.

[11]  Wanhe Li,et al.  Short- and Long-Term Memory in Drosophila Require cAMP Signaling in Distinct Neuron Types , 2009, Current Biology.

[12]  M. Mizunami,et al.  Behavioral Neuroscience , 2022 .

[13]  V. Budnik,et al.  Catecholamine‐containing neurons in Drosophila melanogaster: Distribution and development , 1988, The Journal of comparative neurology.

[14]  E. Kravitz,et al.  Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster , 2010, PloS one.

[15]  T. Zars,et al.  Serotonin is Critical for Rewarded Olfactory Short-Term Memory in Drosophila , 2012, Journal of neurogenetics.

[16]  G. Laurent,et al.  Conditional modulation of spike-timing-dependent plasticity for olfactory learning , 2012, Nature.

[17]  C. Cirelli,et al.  From genetics to structure to function: exploring sleep in Drosophila. , 2011, International review of neurobiology.

[18]  Ronald L. Davis,et al.  Olfactory learning in Drosophila. , 2010, Physiology.

[19]  Zhiyuan Lu,et al.  Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx , 2012, The Journal of comparative neurology.

[20]  M. Hammer,et al.  Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. , 1998, Learning & memory.

[21]  D. Nässel,et al.  Serotonin-like immunoreactivity in the optic lobes of three insect species , 2004, Cell and Tissue Research.

[22]  Tzumin Lee,et al.  Serotonin–mushroom body circuit modulating the formation of anesthesia-resistant memory in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[23]  A. Fiala Olfaction and olfactory learning in Drosophila: recent progress , 2007, Current Opinion in Neurobiology.

[24]  Troy Zars,et al.  Behavioral functions of the insect mushroom bodies , 2000, Current Opinion in Neurobiology.

[25]  A. Fiala,et al.  Punishment Prediction by Dopaminergic Neurons in Drosophila , 2005, Current Biology.

[26]  J. Devaud,et al.  Long-Term Memory Leads to Synaptic Reorganization in the Mushroom Bodies: A Memory Trace in the Insect Brain? , 2010, The Journal of Neuroscience.

[27]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[28]  N. Strausfeld,et al.  Comparison of octopamine‐like immunoreactivity in the brains of the fruit fly and blow fly , 2006, The Journal of comparative neurology.

[29]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[30]  Ronald L. Davis,et al.  Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. , 2006, Neuron.

[31]  Yoshinori Aso,et al.  The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers , 2009, Journal of neurogenetics.

[32]  Daryl M. Gohl,et al.  Layered reward signaling through octopamine and dopamine in Drosophila , 2012, Nature.

[33]  R. Kelly,et al.  Traffic of Dynamin within Individual DrosophilaSynaptic Boutons Relative to Compartment-Specific Markers , 1996, The Journal of Neuroscience.

[34]  Thomas Preat,et al.  Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila , 2011, Current Biology.

[35]  Ronald L. Davis,et al.  Olfactory memory formation in Drosophila: from molecular to systems neuroscience. , 2005, Annual review of neuroscience.

[36]  W. Blenau,et al.  Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. , 2011, Arthropod structure & development.

[37]  D. Nässel,et al.  Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons , 2004, Cell and Tissue Research.

[38]  Yoshinori Aso,et al.  Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory , 2010, Current Biology.

[39]  Shawn R. Olsen,et al.  Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila , 2008, Trends in Neurosciences.

[40]  Wanhe Li,et al.  Gamma Neurons Mediate Dopaminergic Input during Aversive Olfactory Memory Formation in Drosophila , 2012, Current Biology.

[41]  J. Hirsh,et al.  Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster , 2000, Current Biology.

[42]  Ghislain Belliart-Guérin,et al.  Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila , 2012, Nature Neuroscience.

[43]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[44]  S. Fahrbach Structure of the mushroom bodies of the insect brain. , 2006, Annual review of entomology.

[45]  R. Schulz,et al.  Expression of the D-MEF2 transcription in the Drosophila brain suggests a role in neuronal cell differentiation. , 1996, Oncogene.

[46]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[47]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[48]  Ronald L. Davis,et al.  Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity , 2009, Front. Neural Circuits.

[49]  N. Strausfeld,et al.  The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. , 1998, Learning & memory.

[50]  Akira Mamiya,et al.  Imaging of an Early Memory Trace in the Drosophila Mushroom Body , 2008, The Journal of Neuroscience.

[51]  Ronald L. Davis,et al.  The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning , 2008, Nature Neuroscience.

[52]  N. Strausfeld,et al.  Organization of olfactory and multimodal afferent neurons supplying the calyx and pedunculus of the cockroach mushroom bodies , 1999, The Journal of comparative neurology.

[53]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[54]  H. Pflüger,et al.  The role of octopamine in locusts and other arthropods. , 2010, Journal of insect physiology.

[55]  A. Sehgal,et al.  Octopamine Regulates Sleep in Drosophila through Protein Kinase A-Dependent Mechanisms , 2008, The Journal of Neuroscience.

[56]  Jason Sih-Yu Lai,et al.  Heterotypic Gap Junctions between Two Neurons in the Drosophila Brain Are Critical for Memory , 2011, Current Biology.

[57]  Yoshinori Aso,et al.  Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability , 2012, PLoS genetics.

[58]  W. Jones,et al.  The expanding reach of the GAL4/UAS system into the behavioral neurobiology of Drosophila. , 2009, BMB reports.

[59]  G. Technau FIBER NUMBER IN THE MUSHROOM BODIES OF ADULT DROSOPHILA MELANOGASTER DEPENDS ON AGE, SEX AND EXPERIENCE , 2007, Journal of neurogenetics.

[60]  S. Schäfer,et al.  Dopamine‐like immunoreactivity in the brain and suboesophageal ganglion of the honeybee , 1989, The Journal of comparative neurology.

[61]  Gaia Tavosanis,et al.  Synaptic organization in the adult Drosophila mushroom body calyx , 2009, The Journal of comparative neurology.

[62]  M Heisenberg,et al.  Localization of a short-term memory in Drosophila. , 2000, Science.

[63]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[64]  R. Davis,et al.  Tripartite mushroom body architecture revealed by antigenic markers. , 1998, Learning & memory.

[65]  I. Meinertzhagen,et al.  Synaptic organization of the mushroom body calyx in Drosophila melanogaster , 2002, The Journal of comparative neurology.

[66]  S. Kreissl,et al.  Octopamine‐like immunoreactivity in the brain and subesophageal ganglion of the honeybee , 1994, The Journal of comparative neurology.

[67]  Robert A. A. Campbell,et al.  Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body , 2011, The Journal of Neuroscience.

[68]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[69]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[70]  Benjamin H. White,et al.  Sleep in Drosophila is regulated by adult mushroom bodies , 2006, Nature.

[71]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[72]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[73]  I. Meinertzhagen,et al.  The genetic analysis of functional connectomics in Drosophila. , 2012, Advances in genetics.

[74]  K. Han,et al.  A Novel Octopamine Receptor with Preferential Expression inDrosophila Mushroom Bodies , 1998, The Journal of Neuroscience.

[75]  I. Meinertzhagen,et al.  Development and structure of synaptic contacts in Drosophila. , 2006, Seminars in cell & developmental biology.

[76]  G. Rubin,et al.  Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila , 2011, Nature Neuroscience.

[77]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[78]  Simon G. Sprecher,et al.  The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function , 2012, PloS one.

[79]  Jean-René Martin,et al.  Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. , 2005, Journal of neurobiology.

[80]  D. Glanzman,et al.  Common Mechanisms of Synaptic Plasticity in Vertebrates and Invertebrates , 2010, Current Biology.

[81]  Norbert Perrimon,et al.  A Drosophila Resource of Transgenic RNAi Lines for Neurogenetics , 2009, Genetics.

[82]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[83]  M. Monastirioti,et al.  Biogenic amine systems in the fruit fly Drosophila melanogaster , 1999, Microscopy research and technique.

[84]  M. Geffard,et al.  Dopamine-like immunoreactivity in the bee brain , 1989, Cell and Tissue Research.

[85]  Quan Yuan,et al.  A Sleep-Promoting Role for the Drosophila Serotonin Receptor 1A , 2006, Current Biology.

[86]  F. C. Kenyon The Meaning and Structure of the So-Called "Mushroom Bodies" of the Hexapod Brain , 1896, The American Naturalist.

[87]  S. Farris Are mushroom bodies cerebellum-like structures? , 2011, Arthropod structure & development.

[88]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[89]  Kevin P. Keegan,et al.  A dynamic role for the mushroom bodies in promoting sleep in Drosophila , 2006, Nature.

[90]  Benjamin H. White,et al.  Neurotrapping: Cellular Screens to Identify the Neural Substrates of Behavior in Drosophila , 2009, Front. Mol. Neurosci..

[91]  F. C. Kenyon The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda , 1896 .

[92]  W. Rössler,et al.  Environment- and Age-Dependent Plasticity of Synaptic Complexes in the Mushroom Bodies of Honeybee Queens , 2006, Brain, Behavior and Evolution.

[93]  D. Nässel Histamine in the brain of insects: a review , 1999, Microscopy research and technique.

[94]  P. Salvaterra,et al.  Analysis of choline acetyltransferase protein in temperature sensitive mutant flies using newly generated monoclonal antibody , 1996, Neuroscience Research.

[95]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[96]  A. Guo,et al.  Go signaling in mushroom bodies regulates sleep in Drosophila. , 2011, Sleep.

[97]  Ronald L. Davis,et al.  DAMB, a Novel Dopamine Receptor Expressed Specifically in Drosophila Mushroom Bodies , 1996, Neuron.

[98]  T. Préat,et al.  Localization of Long-Term Memory Within the Drosophila Mushroom Body , 2001, Science.

[99]  Sang Ki Park,et al.  Dopamine Is a Regulator of Arousal in the Fruit Fly , 2005, The Journal of Neuroscience.

[100]  Stephan J. Sigrist,et al.  Structural Long-Term Changes at Mushroom Body Input Synapses , 2010, Current Biology.

[101]  Ronald L. Davis Mushroom bodies and drosophila learning , 1993, Neuron.

[102]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[103]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[104]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[105]  Kei Ito,et al.  Identification of a dopamine pathway that regulates sleep and arousal in Drosophila , 2012, Nature Neuroscience.

[106]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[107]  Ann-Shyn Chiang,et al.  Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx , 2003, Development.

[108]  W. Gronenberg Subdivisions of hymenopteran mushroom body calyces by their afferent supply , 2001, The Journal of comparative neurology.

[109]  Stephan J. Sigrist,et al.  Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila , 2011, The Journal of Neuroscience.

[110]  Frank Hirth,et al.  The Dopaminergic System in the Aging Brain of Drosophila , 2010, Front. Neurosci..

[111]  P. Mobbs The Brain of the Honeybee Apis Mellifera. I. The Connections and Spatial Organization of the Mushroom Bodies , 1982 .

[112]  G Laurent,et al.  Spatiotemporal structure of olfactory inputs to the mushroom bodies. , 1998, Learning & memory.

[113]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[114]  N. Strausfeld,et al.  The mushroom bodies of Drosophila melanogaster: An immunocytological and golgi study of Kenyon cell organization in the calyces and lobes , 2003, Microscopy research and technique.

[115]  R. Greenspan,et al.  Dopaminergic Modulation of Arousal in Drosophila , 2005, Current Biology.

[116]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[117]  Zhiyuan Lu,et al.  Age‐related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera , 2012, The Journal of comparative neurology.

[118]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[119]  R. Davis,et al.  The Role of Drosophila Mushroom Body Signaling in Olfactory Memory , 2001, Science.

[120]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[121]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[122]  J. Hirsh,et al.  Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes , 2005, Journal of Biological Chemistry.

[123]  Thomas Preat,et al.  PKA Dynamics in a Drosophila Learning Center: Coincidence Detection by Rutabaga Adenylyl Cyclase and Spatial Regulation by Dunce Phosphodiesterase , 2010, Neuron.

[124]  M Heisenberg,et al.  Mushroom bodies suppress locomotor activity in Drosophila melanogaster. , 1998, Learning & memory.

[125]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[126]  Sufia Sadaf,et al.  Synaptic Activity in Serotonergic Neurons Is Required for Air-Puff Stimulated Flight in Drosophila melanogaster , 2012, PLoS ONE.

[127]  Martin Heisenberg,et al.  Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster , 1982, Nature.

[128]  N. Strausfeld,et al.  Global and local modulatory supply to the mushroom bodies of the moth Spodoptera littoralis. , 2008, Arthropod structure & development.

[129]  Jay Hirsh,et al.  Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. , 2003, Journal of neurobiology.

[130]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[131]  K. Furukubo-Tokunaga,et al.  Distinctive Neuronal Networks and Biochemical Pathways for Appetitive and Aversive Memory in Drosophila Larvae , 2009, The Journal of Neuroscience.

[132]  A. Chiang,et al.  Molecular Genetic Analysis of Sexual Rejection: Roles of Octopamine and Its Receptor OAMB in Drosophila Courtship Conditioning , 2012, Journal of Neuroscience.

[133]  A. Fiala,et al.  Optical calcium imaging in the nervous system of Drosophila melanogaster. , 2012, Biochimica et biophysica acta.

[134]  F. Schürmann,et al.  Serotonin‐immunoreactive neurons in the brain of the honeybee , 1984, The Journal of comparative neurology.

[135]  R. Strauss,et al.  Behavioral consequences of dopamine deficiency in the Drosophila central nervous system , 2010, Proceedings of the National Academy of Sciences.

[136]  W. Quinn,et al.  Reward learning in normal and mutant Drosophila. , 1983, Proceedings of the National Academy of Sciences of the United States of America.