Entanglement evolution and generalised hydrodynamics: noninteracting systems

The large-scale properties of homogeneous states after quantum quenches in integrable systems have been successfully described by a semiclassical picture of moving quasiparticles. Here we consider the generalisation for the entanglement evolution after an inhomogeneous quench in noninteracting systems in the framework of generalised hydrodynamics. We focus on the protocol where two semi-infinite halves are initially prepared in different states and then joined together, showing that a proper generalisation of the quasiparticle picture leads to exact quantitative predictions. If the system is initially prepared in a quasistationary state, we find that the entanglement entropy is additive and it can be computed by means of generalised hydrodynamics. Conversely, additivity is lost when the initial state is not quasistationary; yet the entanglement entropy in the large-scale limit can be exactly predicted in the quasiparticle picture, provided that the initial state is low entangled.

[1]  Matteo Carrega,et al.  Energy transport in an integrable parafermionic chain via generalized hydrodynamics , 2018, Physical Review B.

[2]  V. Eisler,et al.  Hydrodynamical phase transition for domain-wall melting in the XY chain , 2018, Physical Review B.

[3]  P. Calabrese,et al.  Entanglement and diagonal entropies after a quench with no pair structure , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[4]  G. Takács,et al.  Dynamical manifestation of the Gibbs paradox after a quantum quench , 2018, Physical Review A.

[5]  B. Doyon,et al.  Generalized hydrodynamics of classical integrable field theory: the sinh-Gordon model , 2017, SciPost Physics.

[6]  B. Doyon Exact large-scale correlations in integrable systems out of equilibrium , 2017, SciPost Physics.

[7]  P. Calabrese Entanglement and thermodynamics in non-equilibrium isolated quantum systems , 2017, Physica A: Statistical Mechanics and its Applications.

[8]  P. Calabrese,et al.  Universal Broadening of the Light Cone in Low-Temperature Transport. , 2017, Physical review letters.

[9]  Jacopo Viti,et al.  Analytic solution of the domain-wall nonequilibrium stationary state , 2017, 1707.06218.

[10]  V. Alba Entanglement and quantum transport in integrable systems , 2017, Physical Review B.

[11]  David A. Huse,et al.  Dynamics of entanglement and transport in one-dimensional systems with quenched randomness , 2017, Physical Review B.

[12]  B. Doyon,et al.  Soliton Gases and Generalized Hydrodynamics. , 2017, Physical review letters.

[13]  T. Roscilde,et al.  Multispeed Prethermalization in Quantum Spin Models with Power-Law Decaying Interactions. , 2017, Physical review letters.

[14]  P. Calabrese,et al.  Entanglement dynamics after quantum quenches in generic integrable systems , 2017, 1712.07529.

[15]  M. Fagotti Higher-order generalized hydrodynamics in one dimension: The noninteracting test , 2017 .

[16]  L. Piroli,et al.  What is an integrable quench , 2017, 1709.04796.

[17]  P. Calabrese,et al.  Rényi entropies after releasing the Néel state in the XXZ spin-chain , 2017, 1709.02193.

[18]  V. Eisler,et al.  Front dynamics and entanglement in the XXZ chain with a gradient , 2017, 1708.05187.

[19]  Vir B. Bulchandani,et al.  On classical integrability of the hydrodynamics of quantum integrable systems , 2017, 1706.06278.

[20]  E. Ilievski,et al.  Ballistic transport in the one-dimensional Hubbard model: The hydrodynamic approach , 2017, 1706.05931.

[21]  M. Collura,et al.  Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions , 2017, 1706.00413.

[22]  P. Calabrese,et al.  Quench action and Renyi entropies in integrable systems , 2017, 1705.10765.

[23]  H. Spohn,et al.  Drude Weight for the Lieb-Liniger Bose Gas , 2017, 1705.08141.

[24]  P. Calabrese,et al.  Exact solution for the quench dynamics of a nested integrable system , 2017, 1705.00851.

[25]  P. Calabrese,et al.  Emergence of curved light-cones in a class of inhomogeneous Luttinger liquids , 2017, 1705.00679.

[26]  H. Spohn,et al.  A geometric viewpoint on generalized hydrodynamics , 2017, 1704.04409.

[27]  B. Doyon,et al.  Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics. , 2017, Physical review letters.

[28]  C. Karrasch,et al.  Solvable Hydrodynamics of Quantum Integrable Systems. , 2017, Physical review letters.

[29]  H. Spohn,et al.  Dynamics of hard rods with initial domain wall state , 2017, 1703.05971.

[30]  C. Karrasch,et al.  Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain , 2017, 1702.06146.

[31]  T. Prosen,et al.  Spin diffusion from an inhomogeneous quench in an integrable system , 2017, Nature Communications.

[32]  E. Ilievski,et al.  Microscopic Origin of Ideal Conductivity in Integrable Quantum Models. , 2017, Physical review letters.

[33]  A. Luca,et al.  Nonequilibrium spin transport in integrable spin chains: Persistent currents and emergence of magnetic domains , 2016, 1612.07265.

[34]  M. Rigol,et al.  Correlations and diagonal entropy after quantum quenches in XXZ chains , 2016, 1611.08859.

[35]  G. Zaránd,et al.  Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems. , 2016, Physical Review Letters.

[36]  P. Calabrese,et al.  Entanglement and thermodynamics after a quantum quench in integrable systems , 2016, Proceedings of the National Academy of Sciences.

[37]  B. Doyon,et al.  A note on generalized hydrodynamics: inhomogeneous fields and other concepts , 2016, 1611.08225.

[38]  Jordan S. Cotler,et al.  Entanglement growth after a global quench in free scalar field theory , 2016, 1609.00872.

[39]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[40]  M. Fagotti Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents , 2016, 1608.02869.

[41]  P. Calabrese,et al.  Conformal Field Theory for Inhomogeneous One-dimensional Quantum Systems: the Example of Non-Interacting Fermi Gases , 2016, 1606.04401.

[42]  M. Collura,et al.  Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents. , 2016, Physical review letters.

[43]  B. Doyon,et al.  Emergent hydrodynamics in integrable quantum systems out of equilibrium , 2016, 1605.07331.

[44]  M. Fagotti,et al.  Determination of the Nonequilibrium Steady State Emerging from a Defect. , 2016, Physical review letters.

[45]  M. Rigol,et al.  Generalized Gibbs ensemble in integrable lattice models , 2016, 1604.03990.

[46]  P. Calabrese,et al.  Real-time confinement following a quantum quench to a non-integrable model , 2016, Nature Physics.

[47]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[48]  A. Daley,et al.  Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunneling models , 2016, 1601.02106.

[49]  Jens Eisert,et al.  Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems , 2015, Reports on progress in physics. Physical Society.

[50]  N. Laflorencie,et al.  Quantum entanglement in condensed matter systems , 2015, 1512.03388.

[51]  N. Allegra,et al.  Inhomogeneous field theory inside the arctic circle , 2015, 1512.02872.

[52]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[53]  W. Beugeling,et al.  Global characteristics of all eigenstates of local many-body Hamiltonians: participation ratio and entanglement entropy , 2014, 1410.7702.

[54]  M. Rajabpour,et al.  Entanglement dynamics in short- and long-range harmonic oscillators , 2014, 1408.3744.

[55]  P. Calabrese,et al.  Stationary entropies after a quench from excited states in the Ising chain , 2014, 1406.5070.

[56]  P. Calabrese,et al.  Quantum quenches from excited states in the Ising chain , 2014, 1401.7250.

[57]  Hyungwon Kim,et al.  Ballistic spreading of entanglement in a diffusive nonintegrable system. , 2013, Physical review letters.

[58]  M. Fagotti Finite-size corrections versus relaxation after a sudden quench , 2012, 1211.6731.

[59]  J. M. Deutsch,et al.  Microscopic origin of thermodynamic entropy in isolated systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  V. Gurarie Global large time dynamics and the generalized Gibbs ensemble , 2012, 1209.3816.

[61]  Marcos Rigol,et al.  Entropy of isolated quantum systems after a quench. , 2011, Physical review letters.

[62]  A. Polkovnikov Microscopic diagonal entropy and its connection to basic thermodynamic relations , 2008, 0806.2862.

[63]  P. Calabrese,et al.  Entanglement entropy of two disjoint blocks in XY chains , 2010, 1003.1110.

[64]  I. Peschel,et al.  Reduced density matrices and entanglement entropy in free lattice models , 2009, 0906.1663.

[65]  C. Hagendorf,et al.  Time evolution of one-dimensional gapless models from a domain wall initial state: stochastic Loewner evolution continued? , 2008 .

[66]  P. Calabrese,et al.  Evolution of entanglement entropy following a quantum quench : Analytic results for the XY chain in a transverse magnetic field , 2008, 0804.3559.

[67]  C. Hagendorf,et al.  Time evolution of 1D gapless models from a domain-wall initial state: SLE continued ? , 2008, 0804.2431.

[68]  I. Peschel,et al.  Entanglement in a periodic quench , 2008, 0803.2655.

[69]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[70]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[71]  I. Peschel LETTER TO THE EDITOR: Calculation of reduced density matrices from correlation functions , 2002, cond-mat/0212631.