Understanding Ras: 'it ain't over 'til it's over'.

[1]  C. Marshall,et al.  How do small GTPase signal transduction pathways regulate cell cycle entry? , 1999, Current opinion in cell biology.

[2]  Richard D Klausner,et al.  Studying cancer in the mouse , 1999, Oncogene.

[3]  C. Betsholtz,et al.  EPS8 and E3B1 transduce signals from Ras to Rac , 1999, Nature.

[4]  J. Romashkova,et al.  NF-κB is a target of AKT in anti-apoptotic PDGF signalling , 1999, Nature.

[5]  Asim Khwaja,et al.  Apoptosis: Akt is more than just a Bad kinase , 1999, Nature.

[6]  L. Pfeffer,et al.  NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase , 1999, Nature.

[7]  D. Bar-Sagi,et al.  Suppression of Ras-Induced Apoptosis by the Rac GTPase , 1999, Molecular and Cellular Biology.

[8]  C. Marshall,et al.  Activation of mitogen-activated protein kinase is necessary but not sufficient for proliferation of human thyroid epithelial cells induced by mutant Ras , 1999, Oncogene.

[9]  M. Marshall,et al.  Lack of elevated MAP kinase (Erk) activity in pancreatic carcinomas despite oncogenic K-ras expression. , 1999, International journal of oncology.

[10]  J. Downward,et al.  Multiple Ras Effector Pathways Contribute to G1Cell Cycle Progression* , 1999, The Journal of Biological Chemistry.

[11]  Robert A. Weinberg,et al.  Creation of human tumour cells with defined genetic elements , 1999, Nature.

[12]  T. Morimoto,et al.  Endomembrane Trafficking of Ras The CAAX Motif Targets Proteins to the ER and Golgi , 1999, Cell.

[13]  C. Marshall,et al.  New Insights into the Interaction of Ras with the Plasma Membrane , 1999, Cell.

[14]  Alan R. Saltiel,et al.  Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo , 1999, Nature Medicine.

[15]  J. Hancock,et al.  Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains , 1999, Nature Cell Biology.

[16]  L. Feig Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases , 1999, Nature Cell Biology.

[17]  A. Oliff,et al.  Farnesyltransferase inhibitors: targeting the molecular basis of cancer. , 1999, Biochimica et biophysica acta.

[18]  C. Der,et al.  Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells , 1999, Oncogene.

[19]  T. Urano,et al.  Ral-Specific Guanine Nucleotide Exchange Factor Activity Opposes Other Ras Effectors in PC12 Cells by Inhibiting Neurite Outgrowth , 1999, Molecular and Cellular Biology.

[20]  R. Treisman,et al.  Transformation mediated by RhoA requires activity of ROCK kinases , 1999, Current Biology.

[21]  R. Wolthuis,et al.  Ras caught in another affair: the exchange factors for Ral. , 1999, Current opinion in genetics & development.

[22]  M. White,et al.  Absence of cancer–associated changes in human fibroblasts immortalized with telomerase , 1999, Nature Genetics.

[23]  K. Kaibuchi,et al.  Possible involvement of the inactivation of the Rho-Rho-kinase pathway in oncogenic Ras-induced transformation , 1998, Oncogene.

[24]  S. Lowe,et al.  Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. , 1998, Genes & development.

[25]  E. Génot,et al.  p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes , 1998, Oncogene.

[26]  D. Woods,et al.  Senescence of human fibroblasts induced by oncogenic Raf. , 1998, Genes & development.

[27]  Channing J Der,et al.  Rho family proteins and Ras transformation: the RHOad less traveled gets congested , 1998, Oncogene.

[28]  Channing J Der,et al.  Increasing complexity of Ras signaling , 1998, Oncogene.

[29]  P. Scambler,et al.  RhoE Regulates Actin Cytoskeleton Organization and Cell Migration , 1998, Molecular and Cellular Biology.

[30]  M. Moran,et al.  The exchange factor Ras-GRF2 activates Ras-dependent and Rac-dependent mitogen-activated protein kinase pathways , 1998, Current Biology.

[31]  C. Marshall,et al.  Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1 , 1998, Nature.

[32]  S. Oldham,et al.  Ras, but not Src, transformation of RIE-1 epithelial cells is dependent on activation of the mitogen-activated protein kinase cascade , 1998, Oncogene.

[33]  M. Mattei,et al.  A New Member of the Rho Family, Rnd1, Promotes Disassembly of Actin Filament Structures and Loss of Cell Adhesion , 1998, The Journal of cell biology.

[34]  J. Downward Mechanisms and consequences of activation of protein kinase B/Akt. , 1998, Current opinion in cell biology.

[35]  D. Bar-Sagi,et al.  Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. , 1998, Science.

[36]  C. Y. Wang,et al.  Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. , 1997, Science.

[37]  R. Kucherlapati,et al.  K-ras is an essential gene in the mouse with partial functional overlap with N-ras. , 1997, Genes & development.

[38]  L. Van Aelst,et al.  Rho GTPases and signaling networks. , 1997, Genes & development.

[39]  C. Der,et al.  Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? , 1997, Biochimica et biophysica acta.

[40]  M. White,et al.  Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis , 1997, Molecular and cellular biology.

[41]  Asim Khwaja,et al.  Matrix adhesion and Ras transformation both activate a phosphoinositide 3‐OH kinase and protein kinase B/Akt cellular survival pathway , 1997, The EMBO journal.

[42]  J. Zweier,et al.  Mitogenic Signaling Mediated by Oxidants in Ras-Transformed Fibroblasts , 1997, Science.

[43]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[44]  G. Evan,et al.  Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB , 1997, Nature.

[45]  F. McCormick,et al.  Signal transduction from multiple Ras effectors. , 1997, Current opinion in genetics & development.

[46]  D. Shalloway,et al.  Cell cycle-dependent activation of Ras , 1996, Current Biology.

[47]  S. Cantor,et al.  Evidence for a Ras/Ral signaling cascade. , 1996, Trends in biochemical sciences.

[48]  E. Ruoslahti,et al.  Control of adhesion-dependent cell survival by focal adhesion kinase , 1996, The Journal of cell biology.

[49]  S. Oldham,et al.  Activation of the Raf-1/MAP kinase cascade is not sufficient for Ras transformation of RIE-1 epithelial cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Wigler,et al.  Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation , 1996, Molecular and cellular biology.

[51]  C. Der,et al.  Tyrosine phosphorylation regulates the adhesions of ras-transformed breast epithelia , 1995, The Journal of cell biology.

[52]  C. Der,et al.  Oncogenic Activation of Ras Proteins , 1993 .

[53]  J. Blaydes,et al.  Stepwise transformation of primary thyroid epithelial cells by a mutant Ha‐ras oncogene: An in vitro model of tumor progression , 1992, Molecular carcinogenesis.

[54]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.