A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts

Abstract We study the Knapsack Problem with Conflicts, a generalization of the Knapsack Problem in which a set of conflicts specifies pairs of items which cannot be simultaneously selected. In this work, we propose a novel combinatorial branch-and-bound algorithm for this problem based on an n-ary branching scheme. Our algorithm effectively combines different procedures for pruning the branch-and-bound nodes based on different relaxations of the Knapsack Problem with Conflicts. Its main elements of novelty are: (i) the adoption of the branching-and-pruned set branching scheme which, while extensively used in the maximum-clique literature, was never successfully employed for solving the Knapsack Problem with Conflicts; (ii) the adoption of the Multiple-Choice Knapsack Problem for the derivation of upper bounds used for pruning the branch-and-bound tree nodes; and (iii) the design of a new upper bound for the latter problem which can be computed very efficiently. Key to our algorithm is its high pruning potential and the low computational effort that it requires to process each branch-and-bound node. An extensive set of experiments carried out on the benchmark instances typically used in the literature shows that, for edge densities ranging from 0.1 to 0.9, our algorithm is faster by up to two orders of magnitude than the state-of-the-art method and by up to several orders of magnitude than a state-of-the-art mixed-integer linear programming solver.

[1]  David Pisinger A minimal algorithm for the Multiple-choice Knapsack Problem , 1995 .

[2]  William J. Cook,et al.  Maximum-weight stable sets and safe lower bounds for graph coloring , 2012, Mathematical Programming Computation.

[3]  Panos M. Pardalos,et al.  Improved Infra-Chromatic Bound for Exact Maximum Clique Search , 2016, Informatica.

[4]  Edoardo Amaldi,et al.  Energy-aware traffic engineering with elastic demands and MMF bandwidth allocation , 2013, 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD).

[5]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[6]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[7]  Pablo San Segundo,et al.  Infra-chromatic bound for exact maximum clique search , 2015, Comput. Oper. Res..

[8]  Mikhail Batsyn,et al.  Speeding up branch and bound algorithms for solving the maximum clique problem , 2013, Journal of Global Optimization.

[9]  Pablo San Segundo,et al.  Relaxed approximate coloring in exact maximum clique search , 2014, Comput. Oper. Res..

[10]  Pablo San Segundo,et al.  A new branch-and-bound algorithm for the Maximum Weighted Clique Problem , 2019, Comput. Oper. Res..

[11]  Matteo Fischetti,et al.  A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs , 2017, Oper. Res..

[12]  S. Martello,et al.  Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .

[13]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[14]  Stefano Coniglio,et al.  Methods for Finding Leader-Follower Equilibria with Multiple Followers: (Extended Abstract) , 2016, AAMAS.

[15]  Gilbert Laporte,et al.  A combinatorial column generation algorithm for the maximum stable set problem , 1997, Oper. Res. Lett..

[16]  Stefano Coniglio,et al.  A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization , 2021, Springer Optimization and Its Applications.

[17]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[18]  Sumio Masuda,et al.  A Branch-and-Bound Based Exact Algorithm for the Maximum Edge-Weight Clique Problem , 2018, CSII.

[19]  Hua Jiang,et al.  On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem , 2017, Comput. Oper. Res..

[20]  Fabrizio Rossi,et al.  A branch-and-cut algorithm for the maximum cardinality stable set problem , 2001, Oper. Res. Lett..

[21]  Stefano Coniglio,et al.  On the Generation of Cutting Planes which Maximize the Bound Improvement , 2015, SEA.

[22]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[23]  Hua Jiang,et al.  An Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs , 2017, AAAI.

[24]  Mhand Hifi,et al.  A reactive local search-based algorithm for the disjunctively constrained knapsack problem , 2006, J. Oper. Res. Soc..

[25]  Pablo San Segundo,et al.  A new branch-and-bound algorithm for the maximum edge-weighted clique problem , 2019, Eur. J. Oper. Res..

[26]  Seyedmohammadhossein Hosseinian,et al.  A nonconvex quadratic optimization approach to the maximum edge weight clique problem , 2018, J. Glob. Optim..

[27]  Natashia Boland,et al.  Clique-based facets for the precedence constrained knapsack problem , 2012, Math. Program..

[28]  Javier Marenco,et al.  General Cut-Generating Procedures for the Stable Set Polytope , 2015, Discret. Appl. Math..

[29]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[30]  Fabio Furini,et al.  On integer and bilevel formulations for the k-vertex cut problem , 2019, Mathematical Programming Computation.

[31]  Matteo Fischetti,et al.  On the use of intersection cuts for bilevel optimization , 2018, Math. Program..

[32]  Mhand Hifi,et al.  Local branching-based algorithm for the disjunctively constrained knapsack problem , 2009, 2009 International Conference on Computers & Industrial Engineering.

[33]  Pablo San Segundo,et al.  An improved bit parallel exact maximum clique algorithm , 2013, Optim. Lett..

[34]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[35]  Valentina Cacchiani,et al.  A Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph , 2017, INFORMS J. Comput..

[36]  Qinghua Wu,et al.  A review on algorithms for maximum clique problems , 2015, Eur. J. Oper. Res..

[37]  Mhand Hifi,et al.  An algorithm for the disjunctively constrained knapsack problem , 2012 .

[38]  Stefano Coniglio,et al.  Bilevel Programming Approaches to the Computation of Optimistic and Pessimistic Single-Leader-Multi-Follower Equilibria , 2017, SEA.

[39]  Fabrizio Rossi,et al.  Strong lift-and-project cutting planes for the stable set problem , 2013, Math. Program..

[40]  Paolo Toth,et al.  Algorithms for the Bin Packing Problem with Conflicts , 2010, INFORMS J. Comput..

[41]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[42]  Edoardo Amaldi,et al.  Coordinated cutting plane generation via multi-objective separation , 2014, Math. Program..

[43]  Hua Jiang,et al.  Combining MaxSAT Reasoning and Incremental Upper Bound for the Maximum Clique Problem , 2013, 2013 IEEE 25th International Conference on Tools with Artificial Intelligence.

[44]  Adam N. Letchford,et al.  Ellipsoidal Relaxations of the Stable Set Problem: Theory and Algorithms , 2015, SIAM J. Optim..

[45]  Eitan Zemel,et al.  An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..

[46]  Ulrich Pferschy,et al.  The Knapsack Problem with Conflict Graphs , 2009, J. Graph Algorithms Appl..

[47]  Pablo San Segundo,et al.  An exact bit-parallel algorithm for the maximum clique problem , 2011, Comput. Oper. Res..

[48]  Roberto Tadei,et al.  A multi-KP modeling for the maximum-clique problem , 1994 .

[49]  S. Martello,et al.  An upper bound for the zero-one knapsack problem and a branch and bound algorithm , 1977 .

[50]  Quentin Louveaux,et al.  A combinatorial branch-and-bound algorithm for box search , 2014, Discret. Optim..

[51]  Edoardo Amaldi,et al.  Improving Cutting Plane Generation with 0-1 Inequalities by Bi-criteria Separation , 2010, SEA.

[52]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[53]  G. Nemhauser,et al.  A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing , 1992 .

[54]  Prabhakant Sinha,et al.  The Multiple-Choice Knapsack Problem , 1979, Oper. Res..

[55]  Yu Li,et al.  A new upper bound for the maximum weight clique problem , 2018, Eur. J. Oper. Res..

[56]  Andrew Lim,et al.  A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems , 2020, INFORMS J. Comput..

[57]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[58]  Mariem Gzara,et al.  A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts , 2011, INFORMS J. Comput..

[59]  Martin Dyer,et al.  AN O(n) ALGORITHM FOR THE MULTIPLE-CHOICE , 2007 .

[60]  Ruslan Sadykov,et al.  Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm , 2013, INFORMS J. Comput..

[61]  Pablo San Segundo,et al.  The maximum clique interdiction problem , 2019, Eur. J. Oper. Res..

[62]  Gerhard Reinelt,et al.  A Branch and Cut solver for the maximum stable set problem , 2011, J. Comb. Optim..

[63]  Mhand Hifi,et al.  Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem , 2007, Comput. Oper. Res..

[64]  Takeo Yamada,et al.  Heuristic and Exact Algorithms for the Disjunctively Constrained Knapsack Problem , 2002 .

[65]  Mhand Hifi,et al.  An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem , 2014 .