Admissible rules in the implication-negation fragment of intuitionistic logic

Abstract Uniform infinite bases are defined for the single-conclusion and multiple-conclusion admissible rules of the implication–negation fragments of intuitionistic logic IPC and its consistent axiomatic extensions (intermediate logics). A Kripke semantics characterization is given for the (hereditarily) structurally complete implication–negation fragments of intermediate logics, and it is shown that the admissible rules of this fragment of IPC form a PSPACE-complete set and have no finite basis.

[1]  Emil Jerábek,et al.  Complexity of admissible rules , 2007, Arch. Math. Log..

[2]  James G. Raftery,et al.  Structural Completeness in Substructural Logics , 2008, Log. J. IGPL.

[3]  P. Lorenzen Einführung in die operative Logik und Mathematik , 1955 .

[4]  Tadeusz Prucnal On the structural completeness of some pure implicational propositional calculi , 1972 .

[5]  Petr Cintula,et al.  Structural Completeness in Fuzzy Logics , 2009, Notre Dame J. Formal Log..

[6]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[7]  Emil Jerábek,et al.  Bases of Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[8]  Rosalie Iemhoff,et al.  Intermediate Logics and Visser's Rules , 2005, Notre Dame J. Formal Log..

[9]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[10]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[11]  Tadeusz Prucnal Proof of structural completeness of a certain class of implicative propositional calculi , 1973 .

[12]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[13]  Petr Cintula,et al.  Weakly Implicative (Fuzzy) Logics I: Basic Properties , 2006, Arch. Math. Log..

[14]  Craig Graham McKay,et al.  The decidability of certain intermediate propositional logics , 1968, Journal of Symbolic Logic.

[15]  Vladimir V. Rybakov,et al.  Admissibility of Logical Inference Rules , 2011 .

[16]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[17]  Paul Roziere Regles admissibles en calcul propositionnel intuitionniste , 1992 .

[18]  Rosalie Iemhoff,et al.  Hypersequent Systems for the Admissible Rules of Modal and Intermediate Logics , 2008, LFCS.

[19]  G. Mints,et al.  Derivability of admissible rules , 1976 .

[20]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[21]  Alan Robinson,et al.  Handbook of automated reasoning , 2001 .

[22]  Franz Baader,et al.  Unification theory , 1986, Decis. Support Syst..

[23]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[24]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[25]  Rosalie Iemhoff,et al.  On the admissible rules of intuitionistic propositional logic , 2001, Journal of Symbolic Logic.

[26]  Harvey M. Friedman,et al.  One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.